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a b s t r a c t 

Food packaging is an important area of food research due to its prime role in the protection and containment of 
foodstuffs. Traditionally petroleum-derived polymers fulfill the lion’s share of packaging material requirements. 
However, present-day consumers are more concerned about the environmental impact and health hazards of these 
synthetic polymers. This necessitates the requirement of alternative packaging material with unique biodegrad- 
able and renewable characteristics. The edible film is considered a solution to replace these synthetic plastics 
with naturally available bio-macromolecules such as polysaccharides, proteins, and lipids. An enormous number 
of researches have been carried out across the world to explore its full potential. Their findings need to be con- 
solidated for further development of this trending research area. Therefore, this article comprehensively reviews 
previous research progresses, such as different film formulations from various sources and their characteristics 
and product applications to guide the enthusiastic researchers. Finally, the last section of this article elaborates 
on safety and regulation aspects as well as recent trends and challenges to tackle all the obstacles in establishing 
a greener packaging option. 
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. Introduction 

The packaging is one of the most critical post-harvest operations
or the preservation and shelf-life extension of fruits, vegetables, and
rocessed foods. The major functions of food packaging include protec-
ion, communication, and convenience. Advancement in industrializa-
ion leads to the sharp growth in plastic use for food packaging. The
roduction of plastic in the world has reached up to 380 million tonnes,
nd it has shown a steep increase in the past few decades, where 40%
f the plastic produced is used in packaging applications ( Groh et al.,
019 ). Although plastic is quite convenient as a packaging material, be-
ause of its low price, high mechanical strength, convenience in shape
olding, heat sealability, and lighter in weight, enormous usage of plas-

ic packaging material may lead to adverse effects on the environment
 Cazón et al., 2017 ; Dehghani et al., 2018 ). For example, plastic waste
irtually does not degrade, it will take hundreds of years for its disposal
n a landfill, and the disposal of plastic through incineration can pro-
uce highly toxic gases ( Otoni et al., 2017 ). Hence, plastic is considered
∗ Corresponding authors: Ajesh Kumar V, Centre of Excellence for Soybean Processin
erasia Road, Bhopal, India, Phone number: + 91 8075913057. 
∗∗ Corresponding authors: Muzaffar Hasan, Agro Produce Processing Division, ICAR
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he most significant menace in resolving earth pollution ( Hasan et al.,
020 ). 

In the past few decades, consumers are also aware of the impact of
lastic on the environment. Therefore, the demands of alternate pack-
ging materials which ensure an enhanced shelf-life with good quality
nd less impact on the environment are crucial in the food packaging
ndustry. Edible packaging has been traditionally used to improve food
ppearance and preservation, and it captivated substantial attention in
he last few decades due to the possibility of partial substitution of non–
iodegradable synthetic packaging materials ( Hassan et al., 2018 ). 

The primary role of edible film is controlling the moisture loss and
educing the adverse chemical reaction rates to enhance the quality and
afety of a wide range of processed as well as fresh foods ( Debeaufort, F.
t al., 1998 ). In addition, the incorporation of various food additives
uch as antimicrobials, antioxidants, flavors, and colors into the edible
lm matrix further extends their applications ( Tavassoli-Kafrani et al.,
016 ). However, the permeability and mechanical properties of the ed-
ble film are not on par with conventionally used synthetic plastic films
g and Utilization, ICAR- Central Institute of Agricultural Engineering, Nabibagh, 
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Fig. 1. Application of different types of ed- 
ible film in various foods. a) Soybean aque- 
ous extract-based nanocomposite edible film 

applied as cheese slice separator, b.) Guava 
(left) and beetroot (right) purees produced ed- 
ible film, c.) Sodium alginate based edible 
film applied in meat slice, soluble coffee (d.), 
powder medicine (e.), cheese slice ( V et al., 
2021 ; Otoni et al., 2017 ; Gheorghita (Pus- 
caselu) et al., 2020 ; Puscaselu et al., 2019 ). 
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 Murrieta-Martínez et al., 2018 ). Hence, the present research contribu-
ions were geared towards these property enhancements. 

This article reviews the recent progress in edible packaging, empha-
izing standalone edible films. Information including different types, for-
ulation methods, application on food products, safety and regulations,

nd recent trends in the edible film is comprehensively reviewed. Fi-
ally, the challenges faced in commercial application of edible film in
ood packaging with possible solutions are also covered. 

. Different materials used for edible film formation 

Edible packaging materials are natural polymers obtained from
olysaccharides, proteins (animal or vegetable), lipids, or combinations
f these components ( Khaoula et al., 2004 ; Galus & Kadzi ń ska, 2015 ).
ccording to Market Research Futures (MRFR), the edible packaging
arket (based on protein, lipids, polysaccharides, and other) will be
orth USD 2.14 billion by 2030, with a compound annual growth

ate (CAGR) of 6.79 percent (2022–2030), up from USD 783,32 mil-
ion in 2021. North America will dominate the edible packaging market
hroughout the forecast period, followed by the United Kingdom, Japan,
ndonesia, and Israel ( Future, 2021 ). Several researchers formulated and
haracterized numerous edible films from different plant origin materi-
ls ( Fig. 1 ). Researchers have continuously worked for the last three
ecades to develop edible films that can match the conventional plastic
lms to enable their commercial application. Varieties of edible pack-
ging materials have been discussed in the following section. 

.1. Protein-based edible film 

Edible packaging formed from proteins of plant origin includes corn
ein, wheat gluten, soy protein, peanut protein, quinoa protein, sesame
rotein. In contrast, keratin, egg white protein, myofibrillar protein, col-
agen, gelatine, casein, and milk whey protein are film formers from ani-
al sources ( Mellinas et al., 2016 ). Among different edible film sources,
rotein-based material appears to be more attractive as they also provide
utritional value ( Galus & Kadzi ń ska, 2016 ). In addition, protein-based
dible films have relatively higher mechanical and gas barrier properties
ith low moisture barrier properties. Protein-based films are better than

ipid and polysaccharide films. They have excellent physical properties
nd gas-blocking effects because of their tightly packed and ordered
ydrogen-bonded network structure ( Kumari et al., 2017 ). Oxidation of
ipid materials is the major cause of deterioration of quality and shelf
ife of high fat or fried foods. This can be controlled to a certain extent
y using protein-based packaging, which inhibits oxygen permeation
 Zhang, S & Zhao, 2017 ). The structure of protein also plays a crucial
2 
ole in oxygen permeability. It is reported that corn zein, wheat gluten,
oy protein, and whey protein-based edible film have greater oxygen
ermeability than collagen-based films due to the globular structured
roteins ( Wittaya, 2012 ). Protein-based edible films can also be used for
he individual packaging of small portions of food, particularly products
or which individual packaging is not practically feasible, such as beans,
uts, and cashew nuts ( Bourtoom, 2009 ). Both wet and dry methods can
e used to create the protein-based film. 

.1.1. Whey protein/milk protein 

Whey protein or casein protein is preferred over the total milk pro-
ein for edible film formation as the latter results in crystallization due to
he presence of lactose ( Wagh et al., 2014 ). Edible films can be prepared
rom whey protein fraction, Whey Protein Isolate (WPI), and Whey Pro-
ein Concentrate (WPC) by adding different emulsifiers and plasticiz-
rs ( Galus & Kadzi ń ska, 2016 ; Soazo et al., 2016 ; Çakmak et al., 2020 ;
eydim et al., 2020 ). Whey protein film is characterized by its excellent
xygen, aroma, and oil barrier properties under low to medium rela-
ive humidity conditions. It also has the required mechanical properties
or different applications like food coating, separating food layers, and
ouch formation. In recent times, the addition of probiotics and prebi-
tics have been carried out to enhance the functional properties of the
hey protein-based films ( Fernandes et al., 2020 ; Zoghi et al., 2020 ). 

.1.2. Wheat gluten protein 

Wheat gluten, which contains more than 75% protein, is the pro-
ein part of the wheat flour after removing other starch granules by
ashing ( Chavoshizadeh et al., 2020 ). It consists mostly of monomer
liadins and polymer glutenins in nearly equal amounts by weight. The
ohesiveness and elasticity of gluten provide integrity and facilitate film
ormation ( Fakhouri et al., 2017 ). Wheat gluten has very good oxygen
nd carbon dioxide barriers properties ( Zubeldía et al., 2015 ). In ad-
ition, the ability to form cross-linking upon heating, visco-elasticity
roperties, low water solubility, low cost, and availability due to co-
roduct in the wheat starch industry make wheat gluten a favorite pro-
ein source for edible packaging ( Ansorena et al., 2016 ). Although the
heat gluten-based films show brittleness and tendency to absorb wa-

er after being processed, the application of different methods such as
dding plasticizers, incorporating additives possessing reactive groups
e.g. NH 2 , –COOH, –OH, and –SH), and blending with polymers (e.g;
liphatic polyester, poly (hydroxy ester ether), poly (lactic acid), poly-
aprolactone, poly (vinyl alcohol) and cassava starch) can minimize the
mpact ( Hemsri et al., 2011 ). Moreover, the mechanical properties of
luten-based films are strongly affected by pH and gluten concentra-
ion, while water vapor permeability may be correlated with pH and



A.K. V, M. Hasan, S. Mangaraj et al. Applied Food Research 2 (2022) 100118 

e  

t  

d  

H

2

 

b  

S  

o  

s  

d  

g  

f  

e  

H  

p  

m  

2  

a  

o  

h  

i  

a  

t  

fi  

a  

2

2

 

b  

(  

t  

T  

z  

2  

s  

t  

t  

z  

s  

a  

S  

m

2

 

e  

Z  

b  

G  

b  

p  

g  

p  

p  

s  

i  

o  

r  

o

2

 

h  

i  

2  

p  

Y  

t  

i  

s  

g  

s  

i  

a  

A  

w  

i  

fi

2

 

p  

fi  

l  

P  

l  

i  

fi  

2  

H  

a  

t  

T  

t  

d

2

 

c  

m  

l  

c  

m  

b  

e  

e  

P  

a  

a  

fi  

p

2

 

b  

s  

p  

r  

(
 

c  

H  

a  

c  

t  

o  

p

thanol levels ( Fakhouri et al., 2017 ). The physiochemical properties of
he wheat gluten films can be improved by the incorporation of other
ifferent proteins, polysaccharides, and organic acids ( Dong et al., 2022 ;
e et al., 2020 ) 

.1.3. Soy protein 

Soy protein isolate (SPI) is one of the major sources of protein for edi-
le packaging obtained from dehulled and defatted soybean ( Cristine De
ouza et al., 2020 ). Soy protein-based formation of the edible film
ccurred in two steps process- 1) disruption of soy protein complex
tructure through alkaline or heating treatment and cleavage of native
isulfide bonds lead to exposure of sulfhydryl groups and hydrophobic
roups; and 2) new disulfide bonds, hydrophilic and hydrophobic bonds
ormation. Utilizing native soy protein is challenging in applications like
dible packaging due to its structural characteristics ( Gao et al., 2015 ).
owever, modification of soy protein is possible with cross-linking of
rotein structure by different methods like denaturation, thermal treat-
ent, and application of natural cross-linking agents ( Friesen et al.,
015 ; Xia et al., 2015 ). Most commonly used protein cross-linkers are
ldehydic compounds such as glutaraldehyde, formaldehyde, and gly-
xal, phenolic, and epoxy compounds. The SPI-based edible films ex-
ibit properties such as transparency, flexibility, low oxygen permeabil-
ty, even comparable to low-density polyethylene film with abundant
vailability and low cost ( Nandane & Jain, 2018 ). The gelling ability of
he SPI makes it convenient in forming a suitable matrix for composite
lms with lipids as well as bioactive compounds such as antioxidants
nd antimicrobial agents ( Carpiné et al., 2015 ; Cristine De Souza et al.,
020 ). 

.1.4. Sodium caseinate 

Sodium caseinate (SC) is a water-soluble form of casein produced
y adjusting acid-coagulated casein to pH 6.7 using sodium hydroxide
 Belyamani et al., 2014 ; Yin et al., 2014 ). The randomly coiled struc-
ure of the SC enables good film formation ( Lin, Wang and Weng, 2020 ).
he earlier studies addressed that surface modification of SC film with
ein coating has yielded film with better barrier properties ( Yin et al.,
014 ). The structural inversion approach of zein coating on SC film re-
ulted in surface irregularities with high irregular projections, which ul-
imately led to enhanced water and oxygen barrier properties. Whereas
he direct coating only reduced the oxygen barrier property in which the
ein nano-spheres were evenly distributed on the film surface. In recent
tudies, cross-linking with genipinin ( Lin et al., 2020 ; Qiu et al., 2020 ),
nd incorporation of essential oils and antimicrobial agents ( Alizadeh-
ani et al., 2020 ; Di Giuseppe et al., 2022 ) have proven to enhance the
echanical and antibacterial properties of the SC films. 

.1.5. Corn zein 

Corn zein is a major protein that can be utilized to prepare the
dible film, edible coating, and pouches ( Chen et al., 2014 ; Zhang &
hao, 2017 ). Corn zein is extracted from corn gluten, a by-product of
ioethanol production, which ensures plentiful availability ( Escamilla-
arcía et al., 2013 ). Zein is applied to other protein and polysaccharide-
ased films such as SPI and glucomannan ( Wang Kai et al., 2017 ) to im-
rove barrier properties and act as a finishing agent by imparting surface
loss ( Cheng et al., 2015 ). The formation of zein coating on hydrophilic
rotein-based films via the specific protein-protein interactions has a
romising potential to improve their barrier capability. Zein contains
harply defined hydrophobic and hydrophilic domains at its surface and
s capable of self-assembly ( Yin et al., 2014 ). The hydrophobic property
f zein is contributed by the high proportion of non-polar amino acid
esidues, such as proline, leucine, and alanine. Thus, zein has been rec-
mmended as an edible film matrix material ( Chen et al., 2014 ). 

.1.6. Collagen and gelatin 

Collagen, an animal-sourced protein used in edible packaging, is a
ydrophilic protein rich in glycine, hydroxyproline, and proline; hence
3 
t swells in polar liquids with high solubility parameters ( Coppola et al.,
020 ). Studies have reported that usage of collagen casing for meat
roducts dates back to the 1920s ( Janjarasskul & Krochta, 2010 ;
ang et al., 2016 ). Similar to collagen, gelatin is an animal protein ob-
ained by controlled hydrolysis of the fibrous insoluble collagen present
n the bones and skins generated as waste materials during animal
laughtering and processing ( Lopez et al., 2017 ). The application of
elatin as an edible film has been extensively studied in several research
tudies ( Bonilla & Sobral, 2016 ; Jridi et al., 2019 ). Gelatin is known for
ts application advantages such as good film-forming ability, good gas
nd oil resistance, nontoxicity, low price, and biodegradable properties.
t the same time, its poor mechanical property, low thermal stability,
eak water resistance, and rapid biodegradation property need to be

mproved ( Ge et al., 2017 ). This can be tackled by forming a composite
lm using appropriate starch materials ( Cheng et al., 2022 ). 

.1.7. Other protein sources 

For the sustainable use of protein sources, researchers started ex-
loiting the use of protein from different sources to assess the edible
lm-forming abilities. These sources are chosen either as by-product uti-

ization or for exploiting their unique properties and nutritional values.
rotein from sources such as peanut protein and peanut protein iso-
ate ( Sun et al., 2013 ), lentil protein ( Bamdad et al., 2006 ), a protein
solated from sesame ( Sharma & Singh, 2016 ), myofibrillar proteins of
sh muscle ( Kaewprachu et al., 2016 ), pumpkin seed protein ( Xu et al.,
019 ; Lalnunthari et al., 2020 ), egg white protein ( Han et al., 2020 ;
uang X et al., 2020 ), and rice protein ( Wang et al., 2020 ), etc. were
lso exploited for the formation of edible film. The major lacunae of
hese proteins are the inability to form a proper film-forming matrix.
his can be overcome by cross-linking with transglutaminase and ul-
rasonication ( Cruz-Diaz et al., 2019 ). These protein sources are used
irectly or in composite film formation. 

.2. Polysaccharide-based edible film 

Polysaccharides are the most abundant natural polymer, and re-
ently, they have been widely used to prepare edible film or coatings
aterials ( Imre et al., 2019 ). Polysaccharides viz cellulose, hemicel-

ulose, starch, pectin, and derivatives of all these alginates, pullulan,
hitin, and chitosan, are intensively used for edible film and coating
aterials preparation ( Cazón et al., 2017 ). Polysaccharides-based edi-

le films have a well-ordered hydrogen-bonded network, making them
fficient oxygen blockers. However, polysaccharides-based films are less
fficient in working as a moisture barrier due to their hydrophilic nature.
olysaccharide coatings are free from oil content, colorless in appear-
nce, and used to extend the product’s shelf life without creating any
naerobic condition ( Mohamed et al., 2020 ). The polysaccharide-based
lm can be developed using both wet and dry methods. Commonly used
olysaccharide materials for film formation include the following. 

.2.1. Cellulose and its derivatives 

Cellulose is the most abundant natural organic polymer, which can
e applied for the preparation of the edible film. It is the primary
tructural component of the plant cell wall and is a linear homo-
olysaccharide comprised of 𝛽-1,4 glucose. Cellulose derivatives are de-
ived from structural modifications like the addition of a small group
methyl, hydroxyl, and carboxyl) in cellulose ( Fig. 2 ). 

Principally four types of cellulose derivatives are used for edible
oatings or films like Hydroxypropyl methylcellulose (HPMC; E464),
ydroxypropyl cellulose (HPC; E463), Methylcellulose (MC; E461),
nd Carboxymethylcellulose (CMC; E466) ( Bourtoom, 2008 ). MC-based
oatings create a barrier to in and out the movement of oil or lipids
herefore used in confectionery foodstuffs. Similarly, HPMC-based film
r coatings hinder the oil absorption consequently used for fried food
roducts ( Ngatirah et al., 2022 ) 
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Fig. 2. Chemical Structure of different polysaccharides. 

2

 

l  

c  

i  

p  

l  

c  

i  

l  

p  

(

2

 

a  

t  

2  
.2.2. Starch and modified starch 

Starch is a homo polysaccharide, comprised of amylose and amy-
opectin, used to develop biodegradable films because it can form a
ontinuous matrix and is a renewable and abundant resource. Amylose
s a linear polymer of (1 →4) glucose, while amylopectin is a branched
olymer of 𝛼 (1 →4) glucose and 𝛼 (1 →6) glucose ( Fig. 2 ). Among amy-
ose and amylopectin, amylose is generally used for film formation be-
ause of its high flexibility, low oxygen permeability, and water solubil-
ty ( Cazón et al., 2017 ). However, the inherent hydrophilicity of amy-
4 
ose makes it a poor barrier for water vapor. Therefore, improvising the
roperty of the starch-based edible film, starch modification is needed
 Askari et al., 2018 ). 

.2.3. Pectin 

The polysaccharide pectin predominantly consists of galacturonic
cid and its derivatives ( Fig. 2 ). These polysaccharides are largely ex-
racted from citrus peel and apple pomace ( Morales-Contreras et al.,
020 ). The degree of esterification of pectin with methanol directly
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ffects the gelation and film-forming ability. Methoxy pectin (or es-
erified pectin) can be classified as low methoxy pectin (LMP) and
igh methoxy pectin (HMP) according to the degree of esterification
 Espitia et al., 2016 ). Pectin is widely used in the edible film industry
ue to its biodegradability, biocompatibility, edibility, versatile chemi-
al and physical properties such as selective gas permeability, and gela-
ion ( Chodijah et al., 2019 ) 

.2.4. Alginate 

Alginates have mannuronic acid and guluronic acid in structure
 Fig. 2 ) and the composition of mannuronic acid and guluronic
cid affects the physical property and molecular weight of alginates
 Madsen et al., 2021 ). Alginate polysaccharides are mainly isolated
rom brown seaweeds. The colloidal nature of alginate, which includes
hickening, stabilizing, film-forming, and suspending properties, makes
t competent for edible film-forming material ( Hassan et al., 2018 ).
he presence of both the anionic sugar-acid enables it to bind divalent
ations like Ca + 2 , Mg + 2 , Mn + 2 , and Fe + 2 . Therefore, incorporating di-
alent cations as a gelling agent causes the alginates-based edible film
o be attributed to other physical properties like retaining moisture and
olor ( Senturk Parreidt et al., 2018 ). The alginate-based edible film or
oatings show lesser resistance to moisture or water because of the in-
erent hydrophilic nature of alginates ( Dhanapal et al., 2012 ). 

.2.5. Pullulan 

The pullulan polysaccharide is secreted by the fungus Auerobasid-

um pullulans to resist desiccation and predation. The structure of pul-
ulan mainly comprises maltotriose units ( Fig. 2 ). Pullulan works as
 thickener in edible film formation, and pullulans-based coatings are
elpful to increase the shelf life of fruits ( Diab et al., 2001 ). The ed-
ble coating property of pullulan can be enhanced by the use of glu-
athione (reducing agent) and chito oligosaccharide (antibacterial) in
ombination ( Hassan et al., 2018 ). Like other polysaccharides, pullu-
an is hydrophilic in nature, which negatively affects its water barrier
nd mechanical properties. This limitation can be negotiated by adding
ipids and fatty acids such as beeswax (BW), palmitic acid, and oleic
cid ( Omar-Aziz et al., 2021 ). 

.2.6. Chitin and chitosan 

Chitin is the primary component of the cell wall of fungi and inverte-
rates. Deacetylation of chitin in alkali solution, convert it into chitosan.
he repetitive unit in chitin polysaccharide is N -acetylglucosamine, a
erivative of glucose monosaccharide ( Fig. 2 ). Chitosan-based edible
lms have barrier properties for O 2 and CO 2 as well as possess inherent
ntimicrobial properties. The physicochemical properties of chitosan-
ased edible film or coatings are varied with the degree of deacetylation
f chitin ( Kumar et al., 2020 ). Chitin is characterized by its excellent
iodegradability, biocompatibility, antibacterial activity, and low im-
unogenicity ( Li et al., 2019 ). Chitosan products are highly viscous,

esembling natural gums with antimicrobial properties due to active
mino groups ( Nguyen et al., 2020 ), and they can form transparent
lms to enhance the quality and extend the storage life of food prod-
cts ( Ribeiro et al., 2020 ). 

.3. Lipids-based edible film 

Lipids are naturally originated compounds from plants, animals, and
nsects. The diversity of the lipid functional groups is made up of mono-,
i-, tri-glycerides, phospholipids, phosphatides, terpenes, cerebrosides,
atty acids, and fatty alcohol ( Mohamed et al., 2020 ). Unlike protein
nd polysaccharides, lipids alone cannot form an edible film. Though
hey are capable of forming an edible coating, the lack of a large num-
er of repeating units connected by covalent bonds prevents the forma-
ion of a stand-alone film. Therefore, different plant and animal-based
ipids (oils and fats) are incorporated in film-forming solution (FFS)
5 
o the emulsion-based edible film to impart more hydrophobic prop-
rties due to their low polarity ( Janjarasskul & Krochta, 2010 ; Galus &
adzi ń ska, 2015 ). Oils and fats are chemically similar mixtures where
ain components are triglycerides but differ in origin and physical ap-
earance. Oils come from plants and liquids in nature, whereas fats
riginate from animals and are solid in appearance at room tempera-
ure. Different vegetable oils (sunflower oil, olive oil, rapeseed oil, etc.),
lant-based waxes (candelilla, carnauba, and sugar cane waxes), animal-
ased waxes (beeswax, lanolin, and wool grease), and synthetic waxes
ike paraffin wax and petroleum wax were added to form FFS ( Rhim
 Shellhammer, 2005 ). Waxes are made up of alcohol and/or esters
f a long-chain acid; therefore, waxes have a larger molecular weight
ith potent hydrophobicity. Vegetable oil is a raw, oily material pro-
uced from nuts, seeds, or newly cut flowers after being pressed cold.
n the other hand, essential oil is a highly aromatic compound produced

hrough steam distillation from various parts of a plant (leaves, roots,
ruit, wood, and flower). Essential oils are highly rich in hydrophobic,
romatic, and volatile compounds like terpenes and terpenoids. Further-
ore, essential oils have potent antimicrobial properties. 

Some lipid materials like virgin coconut oil added to the FFS have
educed the water vapor permeability (WVP) of the edible film prepared
rom SPI ( Carpiné et al., 2015 ; Fangfang et al., 2020 ). To give antiox-
dant and antimicrobial properties, essential oils from many aromatic
pices of clove, rosemary, cinnamon, lemon, thyme, garlic, oregano
ere added into FFS during the emulsification process. Encapsulating
ssential oils in the edible film also gives them stability against their
olatile nature ( Alexandre et al., 2016 ; Perdones et al., 2016 ; Hashemi
 Mousavi Khaneghah, 2017 ). The main disadvantage of lipid film mate-

ial is its fragile nature. It also makes the film waxy and greasy in texture
nd taste, which is not desirable for packaging material on many occa-
ions. To have the desired properties for the film, the compatibility of
he lipid phase with the polymer matrix is essential. The use of different
ssential oils in edible film formulation for improving the WVP as well
s the functional properties such as antibacterial and antioxidant prop-
rties are listed in Table 1 . The lipid-based self-supporting edible film
s generally prepared with an FFS containing any of the high molecular
eight polymers (protein or polysaccharide) using the solvent casting
ethod ( Rhim & Shellhammer, 2005 ). 

.4. Composite edible film 

Composite films are multi-component systems in which different hy-
rophobic, as well as hydrophilic compounds are blended to achieve
etter functional properties. Many times, single functional compounds
orming the polymer matrix, which is capable of forming a structural
atrix with sufficient cohesiveness, may not be sufficient to provide

ll of the required properties, such as mechanical, barrier, and so on
 V. et al., 2022 ; Dhumal & Sarkar, 2018 ). Polar bio-polymeric edi-
le films like polysaccharides and protein generally show good gas
arrier properties and reasonably good mechanical properties at low
elative humidity. Nevertheless, they show poor water barrier prop-
rties due to their hydrophilic nature at high humidity. In contrast,
ydrophobic lipids are reasonably efficient against moisture migra-
ion, but due to their non-polymeric nature, they show poor me-
hanical properties and are inferior to those of hydrocolloid films
 Janjarasskul & Krochta, 2010 ). So, mixing this hydrophobic lipid with
ydrophilic polysaccharides or protein can yield films with better prop-
rties than those formed from individual compounds. For example,
mar-Aziz et al. (2021) experimented with developing film by combin-

ng beeswax and pullulan. They have found a significant improvement
n WVP and TS in the composite film than those films formed from pul-
ulan alone. 

Composite films are prepared either in layer form or in the emulsion
f film-forming materials. Layered composite films are classified into
inary or ternary based on the number of polymers used. Several com-
inations of carbohydrate-protein ( Wang Kun et al., 2017 ; Tavares et al.,
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Table 1 

Use of different essential oils in edible film formulation. 

Matrix Polymer Essential Oil Used 
Targeted 
Product Film Formation Method Observations and Remarks Reference 

Carboxymethyl chitosan: 
Pullulan 

Galangal essential oil (GEO) Mango Casting Developed film exhibited excellent 
thermal stability, biodegradability and 
mechanical properties and was able to 
provide good preservation effect on 
mango. 

( Zhou et al., 2021 ) 

Gelatin: Green tea 
extract 

Lemon essential oil (LEO) Casting Incorporation of green tea extract and 
LEO helps to achieve good WVP for the 
developed film. 

( Nunes et al., 2020 ) 

Gelatin–chitosan blend Ferulago angulate essential 
oil (FAEO) 

Turkey meat Casting FAEO incorporated in gelatin-chitosan 
blend film improved the water solubility 
and WVP. Increased anti-microbial 
property of the film helped in enhancing 
the shelf life of turkey meat. 

( Naseri et al., 2020 ) 

Millet starch Clove essential oil Casting Inclusion of clove oil enhanced the 
anti-oxidant activity and antimicrobial 
properties of the film. 

( Al-Hashimi et al., 
2020 ) 

SPI-gum acacia 
conjugates 

Oregano essential oil 
(OG-EO), lemon essential oil 
(LM-EO), fruit of Amomum 

tsaoko Crevost et Lemaire 
(ACL-EO) and/or grapefruit 
essential oil (GF-EO) 

Casting GF-EO contained film exhibited better 
WVP, mechanical properties and glass 
transition temperature than other EO 

containing films. However, radical 
scavenging activity and antimicrobial 
activity was superior for LM-EO 

incorporated films. 

( Xue et al., 2019 ) 

Basil seed gum Oregano essential oil Casting The resulting film showed a significant 
reduction in WVP with antimicrobial and 
antioxidant activity. 

( Hashemi & 
Mousavi Khaneghah, 2017 ) 

SPI:Acetem: Tween 60 Carvacrol and 
cinnamaldehyde 

Casting The addition of emulsions significantly 
reduced the tensile strength of the films 
and improved their EAB. An only slight 
improvement is reported with the 
addition of essential oils 

( Otoni et al., 2016 ) 

Gelatin: MMT Ginger essential oil (GEO) Casting Synergetic effect of GEO with MMT 
significantly improved the mechanical 
properties like EAB, puncture force and 
puncture deformation. 

( Alexandre et al., 
2016 ) 

Zein Zataria multiflora Boiss. 
essential oil (ZEO) 

Minced meat Casting Addition of ZEO along with monolaurin 
significantly improved the antioxidant 
activity and antimicrobial properties 
against L. monocytogenes and E.Coli 

( Moradi et al., 2016 ) 

Chitosan Cinnamon and Ginger 
essential oil 

Pork Casting Cinnamon and Ginger essential oil has 
distinctly increased the thickness and 
opacity of the chitosan films. The WVP of 
films remained unaffected. Incorporating 
1% EOs yielded the highest antimicrobial 
and antioxidant activities chitosan films 

( Wang et al., 2017 ) 

WPI Almond and walnut oils Casting Addition of oils increased the opacity of 
the film whereas swelling, water vapor 
permeability, and surface hydrophilicity 
were reduced. 

( Galus & 
Kadzi ń ska, 2016 ) 

Chitosan:MMT Rosemary essential oil and 
ginger essential oil 

fresh poultry 
meat 

Casting Incorporation EOs improved only the 
barrier to oxidation but not the 
antimicrobial properties. Overall 
performance of EOs in Chitosan/MMT 
film is not significant 

( Pires et al., 2018 ) 

Abbreviations : EAB: Elongation at break, EO: Essential oil, MMT: Montmorillonite WVP: Water vapor permeability, SPI: Soy protein isolate, WPI: Whey protein 
isolate. 
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021 ), protein-protein ( Dong et al., 2022 ; Tsai & Weng, 2019 ), and
arbohydrate–carbohydrate ( Cheng et al., 2015 ; Fan, Yang, Duan, &
i, 2021 ) is possible in the case of binary film. A myriad of litera-
ure is available in the case of binary film, but limited numbers of
orks are reported in case of ternary composite edible films ( Dhumal &
arkar, 2018 ). Composite films formed by emulsifying the constituents
ive the better film than layered ones, as the layered film may tend to de-
aminate over time, and it also requires a greater number of casting and
rying processes ( Galus & Kadzi ń ska, 2015 ). Composite film prepared by
mulsifying the lipid phase into the hydrocolloid-based structural ma-
rix provides better functionality and barrier properties ( Ochoa et al.,
017 ). The proportion of various polysaccharides in the composite film
an also influence the different physical and optical properties to an ex-
6 
ent ( Saberi et al., 2016 ). Several studies have been published on the
omposite film made by combining polysaccharides and lipids, with the
oal of improving its water barrier properties. The size of the lipid par-
icle on the composite film had a significant effect on WVP properties
nd mechanical properties due to its higher surface area ( Otoni et al.,
016 ). It is also found that composite films using minerals and protein
ave shown a significant improvement in their mechanical properties
 Wang et al., 2015 ). 

Bi-layer films, predominant in composite edible films, can be pre-
ared by casting one layer over the other, but this multi-step process
nvolves the risk of layer delamination. A single-step process in which
ne compound is dispersed with other FFS and then cast to form the film
an solve this problem ( Valencia-Sullca et al., 2018 ; Zuo et al., 2019 ).
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t  
he incorporation of essential oil in nano-emulsion form is the recent
rend followed by the researcher for better efficacy ( Shen et al., 2021 ).
etails of some composite edible films are given in Table 2 . 

.5. Nanoparticle based edible films 

In the last decade, nanotechnology has been used as an innovative
pproach to obtaining nano-scaled organic and inorganic compounds
ith unique properties due to their size ( Espitia & Otoni, 2018 ). By def-

nition, nanomaterials have at least one of its dimensional particle sizes
f about 1-100 nm. The application of nanomaterials in the food packag-
ng sector is an emerging area. Incorporating nanomaterials into matrix
olymers proved to be a promising strategy for improving their physi-
al and mechanical properties, which conventional components cannot
chieve ( Bizymis & Tzia, 2021 ). Moreover, it can be used for the syn-
hesis of efficient active packaging materials by the method of nanoen-
apsulation of bioactive natural materials. The nanoencapsulation tech-
ique improves the stability and solubility of bioactive compounds, thus
eading to the formation of an active film with better performance than
onventional ones ( Pal et al., 2017 ). Various researchers have reported
everal combinations of the bio-based matrix polymer and nanoparti-
les. The application of nano clay is widely exploited due to its abil-
ty to improve the barrier and mechanical properties by their high as-
ect ratio and surface to volume ratio ( Shekarabi et al., 2014 ). Ça ğr ı
ehmeto ğlu et al. (2021) demonstrated the effect of silver nanoparti-

les in whey protein-based films. Their findings show that adding sil-
er nanoparticles to a film increases its tensile strength by 84% and its
arrier properties by 67% over a control film. Similarly, other nanopar-
icles like zinc oxide, titanium oxide, nano cellulose, etc., have been
idely used in food packaging ( Dash et al., 2019 ; Malik & Mitra, 2021 ;
ekta et al., 2020 ). 

However, whether these nanomaterials are safe or not is still a
ontroversial question for the scientific community. Nanomaterials can
ave various toxic effects depending on their chemical composition, par-
icle size distribution, particle shape, and surface condition. The poten-
ial to cause oxidative stress and, in some cases, inflammatory responses
r genotoxic effects are the most common effects observed in experimen-
al studies. The intensity of this harmful effect further depends on the
anomaterial dose in that particular FFS ( Malakar et al., 2021 ). Based
n the size, their ability to penetrate the human cells also varies. For
xample, 100 nm particles can easily penetrate cells, 40 nm can en-
er nuclei, and below 35 nm can cross the blood-brain barrier. More-
ver, smaller sized particles will have more catalytic ability, and their
eactive oxygen species producing potential, adsorption rate, and bind-
ng capability may be comparatively higher than bigger-sized particles
 Bumbudsanpharoke et al., 2015 ; Vlachogianni & Valavanidis, 2014 ).
eliable data on nanoparticles’ safety and toxicological effects is still not
vailable in the public domain. Hence, the effect of these nanoparticles
n human health and environmental microbiota needs to be explored in
etail to rule out any adverse effect. 

. Methods for edible film formulation 

The edible film can be prepared mainly by the wet process and dry
rocess ( Fig. 3 ). In the wet process, biopolymers are solubilized or dis-
ersed in an aqueous solution, water-based or alcohol-based, to form
FS followed by drying of the solvent. In the dry process, biopolymers
ere converted into the film by utilizing the thermoplastic behavior
xhibited by some proteins and polysaccharides at low moisture levels
 Cao et al., 2007 ; Nussinovitch, 2013 ). 

The wet process, also known as solvent casting, is the most pre-
ominant technique used in edible film formulation ( Fig. 4 A) . The
olvent casting process involves the following steps described by
odríguez et al. (2020) , they are as follows: 1) solubilizing the base
iopolymer into a suitable solvent such as water or ethanol to form a
FS, 2) casting the FFS into suitable moulds or Teflon coated plates, 3)
7 
rying the casted film formulation solution, 4) peeling/removing the
lm and storing at suitable RH and temperature. 

During the formulation of FFS, all the components are mixed in to
omogenize solution with the help of low-speed stirrings, ultrasonica-
ion sometimes at a higher temperature suited for the solubilization of
he components into the solvents ( Abral et al., 2019 ). The FFS should
e free from air bubbles to avoid the entrapment in the film matrix that
an affect the structural integrity of the film. Air bubbles from low vis-
ous FFS are normally removed by vacuum degassing ( Ghasemlou et al.,
011 ; Kim & Min, 2012 ; Jouki et al., 2013 ). In the casting step, the
mount of the solution is controlled for adjusting the film thickness. For
xample, V et al. (2022) developed an edible film from soybean aqueous
xtract by following steps like initial mixing of beeswax, clove essential
il, and span-20 using a magnetic stirrer and ultrasonication followed by
olution casting on Teflon sheet and drying at ambient temperature. As
f now, the majority of the works are limited to bench casting, which is
 batch process. Some limited research on continuous casting is also re-
orted. In the drying process, the solvent is evaporated to form an edible
lm. The drying is usually carried out at ambient air condition or at low
emperature (below 60°C) in a hot air dryer. The drying condition plays
 major role in determining the properties of the film ( Bagheri et al.,
019 ). Although the drying time is considerably reduced by alternative
rying methods such as microwave and IR drying, it had a significant
egative effect on the quality and mechanical properties without af-
ecting WVP of the film ( Kaya & Kaya, 2000 ; Srinivasa et al., 2004 ;
árdenas et al., 2008 ; Tapia-Blácido et al., 2013 ). 

The dry process is mainly classified into extrusion, compression
olding, and injection molding. The extrusion method is widely used

or commercial synthetic plastic film formulation ( Fig. 4 B ), in which
he film-forming matrix is subjected to structural changes by the effect
f high temperature, pressure, and low moisture content ( Hernandez-
zquierdo & Krochta, 2008 ; Dang & Yoksan, 2015 ). In this method, the
dible bioplastic materials are first converted into pellets and extruded
ith suitable plasticizers ( Huntrakul et al., 2020 ; Vedove et al., 2021 ) .
he film formulation through extrusion occurs in three steps; i) feeding
he FFS to the extruder, ii) mixing of the FFS in the kneading zone of
he extruder, iii) heating the FFS and either passing through the slit die
ollowed by calendaring (slit-die extrusion) or blowing through circle
ie (blown-film extrusion). 

The process variables in the extrusion of films, such as screw speed,
emperature, feeding rate, and moisture content, have shown great
nfluence on the properties of the film ( Jebalia et al., 2019 ; Ochoa-
epes et al., 2019 ). Extrusion of the film is considered as the most suit-
ble for the large-scale commercial production of edible film with low
nergy consumption and short processing time. However, the high tem-
erature generated during the extrusion causes undesirable changes in
he biopolymer, such as nutritional and sensory losses in edible film, and
pplication is limited to a certain polymer that is tolerant to high tem-
erature with low moisture content FFS ( Otoni et al., 2017 ; Suhag et al.,
020 ). 

Compression molding is considered a sustainable process compared
o the traditional solvent casting method due to its rapid formation and
ess energy requirement ( Uranga et al., 2018 ). In compression molding,
lm-forming materials are subjected to high pressure and temperature

n the mold until solidification ( Lisitsyn et al., 2021 ). Processing pa-
ameters like temperature, pressure and time are critical in deciding
he film properties. The compression method is frequently used with
he extrusion method, in which the former is used for preparing the
lm-forming material prior to the thermoforming process in the latter.
eballos et al., (2020) developed an edible film from cassava starch and
erba extract. The ingredients were extruded into thread form using a
win-screw extruder, followed by compression molding to yield the film.
 compression-molded film can have higher thickness and more flexi-
ility than solvent cast film ( Krishna et al., 2012 ). 

The injection molding method is popular for the industrial produc-
ion of plastics. It is suitable for the mass production of edible films.
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Table 2 

Composite edible film using different polymer matrices. 

Matrix Polymer Plasticizer Method of Preparation Observations and Remarks Reference 

Ipomoea batatas : 
𝜅-carrageenan 

Glycerol Casting Composite blend of Ipomoea batatas and 
𝜅-carrageenan yield film with good 
mechanical and optical properties. 

( Bharti et al., 2020 ) 

Chitosan: Nano-silicon 
aerogel: Okra powder 

Glycerol Casting Combination of chitosan, Nano-silicon 
aerogel with okra powder improved 
mechanical, barrier, optical and 
anti-microbial properties with excellent 
surface characteristics. 

( Lin et al., 2020 ) 

Pearl millet starch: 
Carrageenan gum 

Glycerol Casting Starch and carrageenan concentration has 
positive influence on the Tensile strength 
and barrier properties of the film. It 
enhanced optical, WVP and mechanical 
property values of the film. 

( Sandhu et al., 2020 ) 

Chitosan: WPI Glycerol Casting Composite film resulted in high tensile 
strength, lower deformation, flexibility, 
malleability and good WVP than the films 
formed individually. 

( Tavares et al., 2021 ) 

PG: Modified starch Casting Incorporation of PG reduced WVP, WS, 
MC, and TS of the composite film with an 
increase in its % EB especially when gum 

percentage greater than 50. Result of 
Morphological analysis shows that 
developed film is having good 
homogeneity with smooth structure. 

( Askari et al., 2018 ) 

SPI: VCO:SL Glycerol Casting Amalgamation of SPI, VCO and SL 
resulted in the formation of film with 
increased EAB and lower MC than the 
film obtained from SPI alone. However, 
this blending was not influenced the WVP 
value of the film. 

( Carpiné et al., 2015 ) 

Gelatin: DXG: NH 2 -MMT - Casting Cross-linking effect of DXG and NH2-MMT 
nanofiller resulted in the enhancement of 
water resistance, UV barrier property, and 
mechanical properties of the gelatin-based 
composite film. Enhanced hydrophobicity 
and compact structure resulting from the 
cross-linking slowed down the fungal 
degradation of the film. 

( Ge et al., 2017 ) 

Gelatin: GLU Glycerol, 
Sorbitol 

Casting Gelatin in the composite film improved its 
WVP and gluten enhanced its flexibility. 
EAB was greatly influenced by glycerol 
concentration. However, presence of 
Sorbitol did not alter the EAB. 

( Fakhouri et al., 2017 ) 

Fish gelatin: Chitosan Glycerol Casting Addition of glycerol caused significant 
increase in the TS and elastic modulus, 
leading to stronger films as compared 
with gelatin film, but significantly 
decreased the EAB. Chitosan drastically 
reduced the WVP and solubility of gelatin 
films. 

( Fakhreddin Hosseini 
et al., 2013 ) 

Gelatin: Starch: 𝜀 -PL Glycerol Extrusion blowing Starch/gelatin mix is a suitable substrate 
for making 𝜀 -PL loaded antimicrobial 
edible packaging. 

( Cheng et al., 2022 ) 

Cassava starch: Pea 
protein 

Glycerol Extrusion blowing Incorporation of pea protein isolate at 
20% in cassava starch increased the 
strength of the composite film. 

( Huntrakul et al., 2020 ) 

Casein: wax powder: 
potassium sorbate 

Glycerol Extrusion blowing Extrusion was used to create a new 

composite edible film based on casein and 
several edible waxes. 

( Chevalier et al., 2018 ) 

Cassava starch: YME Glycerol Compression molding Tensile toughness of the cassava starch 
YME composite film highest was obtained 
for 10% YME 

( Ceballos et al., 2020 ) 

GLU: MMT Glycerol Injection molding MMT showed and lubricating effect and 
facilitated the injection molding of GLU 

( Cho et al., 2011 ) 

Abbreviations : DXG: Dialdehyde xanthan gum EAB: Elongation at break, GLU: Wheat gluten, MC: Moisture content, NH 2 -MMT: Amino-functionalized montmo- 
rillonite, PG: Psyllium Gum, SL: Soy lecithin, TS: Tensile strength, VCO: Virgin coconut oil, WPI: Whey protein isolate, WS: Water solubility, WVP: Water vapor 
permeability, YME: yerba mate extract, 𝜀 -PL: 𝜀 -polylysine hydrochloride. 

8 
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Fig. 3. Film formulation methods. 

Fig. 4. Schematic representation of the edible film formulation: (A) Casting method and (B) extrusion method. 
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his method is used in combination with the extrusion method for ob-
aining the final film ( Mellinas et al., 2016 ). However, limited research
as reported in edible film injection molding ( Mellinas et al., 2016 ).
ho et al. (2011) demonstrated the successful development of wheat
luten-based nanocomposite film using injection molding. The ingredi-
nts were pelletized with the help of a compression mold prior to in-
ection molding using a three-phase screw injection-molding machine.
mong the processing parameters, pre-injection temperature, molding

emperature, and injection pressure are most critical for injection mold-
ng ( Perez et al., 2016 ) . 
9 
. Application of edible film for packaging of foods 

Every year the demand for the packaging material increases by
% to meet the total requirement ( Rodrigues et al., 2016 ; Tavassoli-
afrani et al., 2016 ). This increases, and consumers’ concern over
reen packaging triggers the spike in the utilization of bio-based food
ackaging materials for shelf-life extension of different food products
 Falguera et al., 2011 ). Some of the successful applications of edible film
xplored to date are elaborated in the proceeding sections, and Table 3 
ummarizes the different applications of edible packaging on various
ood types. 
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Table 3 

Application of edible film/coatings for essential functions in fruits, vegetables, meat and seafood. 

Edible Film/Coating Additives Food Commodities Significant Function References 

(A) Edible Packaging of Fruits 

Candielila wax Mineral oil Guava fruits Color retention, weight loss ( Tomás et al., 2005 ) 
Cabdielila wax Jojuba oil + ellagic acid Golden delicious apple Weight loss and Sensory qualities Ochoa et al., 2011 
Candelilla wax Guar gum + glycerol Strawberry Anti-fungal, increase shelf life ( Oregel-Zamudio et al., 2017 ) 
Carnauba wax Walnuts, pine nuts Overall appearance by reduction in 

rancidity, taste 
( Mehyar et al., 2012 ) 

Polysaccharide + car- 
nauba 
wax 

Mango During the storage of mango ripening 
improve the permeability 

( Baldwin et al., 1999 ) 

Carrageenan + whey 
protein 

CMC salt + 
PEG + CaCl2 + glycerol + ox- 
alic acid 
additives 

Apple Browning on minimally processed 
apple slices 

( Lee et al., 2003 ) 

Pectin + LDH-salicylate Glycerol Apricot Morphological, thermal and barrier 
properties 

( Gorrasi & Bugatti, 2016 ) 

Whey protein + pectin Sorbitol + gallic 
acid + transglutaminase 

Fresh apples, carrots, 
potatoes 

Antioxidant, phenolic content, weight 
loss, texture and sensory attribute 

( Rossi Marquez et al., 2017 ) 

HPMC + lipid potassium sorbate + sodium 

benzoate + sodium 

propionate + stearic 
acid + glycerol additives 

Oranges Improved antifungal property during 
storage 

( Valencia-Chamorro et al., 2009) 

Cabdielila wax Jojuba oil + ellagic acid Golden delicious apple Sensory qualities, wight loss ( Hassan et al., 2018 ) 
Candelilla wax Guar gum + glycerol Strawberry Anti-fungal, increase shelf life ( Hassan et al., 2018 ) 
Carnauba wax Walnuts, pine nuts Hydrolytic and oxidative rancidity, 

taste, overall appearance 
( Bhartiya et al., 2020 ) 

(B) Edible Packaging of Vegetables 
Chitosan + gelatin Red bell peppers firmness, CO 2 , weight loss, and 

ethanol concentration 
( Poverenov et al., 2014 ) 

Calcium caseinate 
coatings 

Acetylated 
monoglycerides + fatty acid 
esters + sodium salt of 
carboxymethyl cellulose 

Zucchini (summer 
squash) 

reduce water ( Hassan et al., 2018 ) 

Candelilla wax Brussels sprout Reduces weight loss, Preservation of 
vitamin C and polyphenols, mini- 
mal softening, increased overall ap- 
pearance during 
storage. 

( Kowalczyk, 2011 ) 

HPMC + Beeswax Oleic acid + glycerol Cherry tomato Weight loss, peel color, fruit firmness, 
respiration rate, sensory qualities 
enhanced. 

( Fagundes et al., 2015 ) 

k-carrageenan or Tapioca 
starch coatings 

Potassium sorbate + ascorbic 
acid + citric acid + glycerol 

Fortified pumpkin Color and antimicrobial activities 
Fresh-cut 

( Genevois et al., 2016 ) 

(C) Edible Packaging for Sea Foods and Meat Products 

1.25 % chitosan 0.8% glycerol + Tween 
80 + grape seed 
extract + carvacrol 

Salmon Reduce microbial growth Reduce 
lipid oxidation 

( Alves et al., 2017 ) 

Whey protein 
concentrate 

Glycerol + green tea extract Salmon Retarded lipid oxidation ( Castro et al., 2019 ) 

Gelatin Olive leaf extract + glycerol Cold smoked Salmon Microbial growth inhibited by olive 
leaf extracts 

( Albertos et al., 2017 ) 

Chitosan (94.7% DD) Bacteriocin (divergicin M35) Cold smoked wild pacific 
sockeye salmon 

Effective against L. monocytogenes ( Benabbou et al., 2018 ) 

2 % chitosan (75-85 % 

DD) + gelatin 
Glycerol + tween 80 + grape 
seed extract + Ziziphora 
essential oil 

Rainbow trout Improved shelf life by Deferring 
microbial growth and lipid oxidation 

( Kakaei and Shahbazi, 2016 ) 

1% agar + fish protein 
hydrolysates 

Glycerol + Clove EOs Flounder (Paralichthys 
orbignyanus) 

Improved shelf life by improving 
biochemical and microbiological 
parameter 

( da Rocha et al., 2018 ) 

3% Chitosan + 3% 

Sarcoplasmic protein 
Glycerol + Tween 80 with 
ginger EOs 

Red sea bream Extend the shelf life ( Cai et al., 2020 ) 

1 % Chitosan + 0.5 % 

Locust bean gum 

Glycerol + pomegranate peel 
extract 

White shrimps Reduce microbial spoilage and 
volatile bases production 

( Licciardello et al., 2018 ) 

1 % Basil seeds gum Glycerol + (99.5%) Thymol Pacific white shrimp Reduced oil uptake and moisture loss 
during fryig 

( Khazaei et al., 2016 ) 

Sweet potato starch Glycerol + Tween 80 + EOs 
(Thyme) 

Shrimp reduce melanosis prevent microbial 
growth and reduce lipid oxidation 

( Alotaibi and Tahergorabi, 2018 ) 

7% Chitosan (75.5% DD) 1% Protein (42.7%)- lipid 
(11.48%) concentrate 

Shrimp Delayed the onset of melanosis and 
maintained sensory qualities 

( Arancibia et al., 2015 ) 

1% Chitosan (85% DD) 3% gelatin Shrimp Reduced weight loss and improved 
texture and color changes 

( Farajzadeh et al., 2016 ) 

Chitosan (90% DD) Pomegranate peel extract Pacific white shrimp Inhibited melanosis and improved the 
sensory qualities 

( Yuan et al., 2015 ) 

Chitosan (90% DD) 0.5% Tween 80, 0.5% 

carvacrol, and 1% caprylic 
acid 

Pacific white shrimp Extended the shelf life during the iced 
storage 

( Q. Wang et al.,2018 ) 

( continued on next page ) 

10 
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Table 3 ( continued ) 

Edible Film/Coating Additives Food Commodities Significant Function References 

0.5 and 1.5% Chitosan 
(91% DD) 

Atlantic salmon 1.5% Chitosan maintained better 
quality and controlled microbial 
growth 

( Soares et al., 2015 ) 

4% Collagen 0.1, 0.3, 0.5, and 0.7% 

Lysozyme + 1% glycerol 
Salmon Reduced weight loss and improved 

texture and sensory qualities 
( Wang et al., 2017 ) 

1% Carrageenan 1% EOs (lemon) Rainbow trout Preserved physical–chemical, 
morphological, and olfactory 
characteristics 

( Volpe et al., 2019 ) 

1% Alginate 0.3% Tannic acid, 0.3% 

quebracho tannin, and 1% 

ascorbic acid 

Rainbow trout Reduced microbial counts and lipid 
oxidation 

( Sáez et al., 2020 ) 

Whey protein 
concentrate 

Glycerol Rainbow trout Suppressed microbial growth and 
enhanced sensory attributes 

( O ğuzhan Y ı ld ı z & 
Yang ı lar, 2016 ) 

Whey protein Glycerol + NaOH Atlantic salmon Improved the overall quality of 
salmon 

( Rodriguez-Turienzo, Cobos and 
Diaz, 2012 ) 

Caseiante Ascorbic acid Beef Effect of gamma irradiation on 
microbiological characteristic of 
ground beef 

( Hassan et al., 2018 ) 

Abbreviations : DD: de-acetylated, HPMC: Hydroxypropyl methylcellulose, EO: Essential oil. 
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.1. Fruits and vegetables 

Consumers always prefer to choose fruits and vegetables in fresh
orm, which has led to the continuous development of advanced meth-
ds that helps in maintaining quality and shelf life of the produce
 Flores-López et al., 2016 ). Nevertheless, high moisture and microbial
eterioration make these products highly perishable and limit their
torability. Applying adequate packaging such as edible packaging can
nhance its shelf life by creating a barrier against microbes, moisture,
nd gases ( Pizato et al., 2019 ). A number of works have been reported
ased on bio-polymer application in fruits and vegetables ( Table 3
A&B) ). For example, a chitosan-based film in combination with TiO 2 
as experimented for the storage of grapes ( Zhang et al., 2017 ), appli-
ation of alginate-based composite film on shelf life of fresh fig was
tudied by Reyes-Avalos et al., (2016) , the effect of beeswax content on
ydroxypropyl methylcellulose-based edible film on postharvest quality
f coated plums was evaluated by Navarro-Tarazaga et al., (2011) . 

Edible film/coatings can improve the quality and shelf life of vari-
us fruits by inhibiting lipid oxidation, delaying moisture loss, prevent-
ng discoloration, and maintaining the fruits’ appearance during mar-
eting by minimizing dirt and dust contact, entrapping volatile flavor
ompounds, and acting as carriers of food additives such as antimicro-
ial and antioxidative agents. Ochoa et al. (2011) successfully improved
he quality and shelf life of delicious golden apples by applying edible
ayers comprised of natural wax extracted from Euphorbia antisyphi-
itica and potent antioxidant 0.01% ellagic acid (EA). Walnuts and pine
uts coated with a homogenized coating solution of whey protein isolate
ith carnauba wax exhibited lower oxidative and hydrolytic rancidity
nd improved sensory quality ( Mehyar et al., 2012 ). Fagundes et al.,
2015) , evaluated the beneficial properties of composite edible films
ormulated with HPMC, beeswax, and different food preservatives hav-
ng an antifungal property like sodium benzoate, sodium ethyl paraben,
nd sodium methyl paraben applied to cherry tomato with artificially in-
culated black spot fungi Alternaria alternata during cold storage. The
uthors observed that sodium benzoate (2%) based edible packaging
ignificantly reduced weight loss, respiration rate, and maintained the
rmness of the cherry tomatoes. 

.2. Dairy products 

Milk and milk products are considered a good source of dietary
upplements for better health of both children and adults ( Cardador
 Gallego, 2016 ). The literature survey shows that cheese packag-

ng is considered one of the potential application areas of the edi-
le film ( V et al, 2021 ). Packaging, especially with antimicrobial film
11 
n cheese observed to have considerable influences on its shelf life.
ajardo et al. (2010) evaluated the efficacy of chitosan-based film as
 carrier of natamycin to improve storage stability of Saloio cheese, and
bserved that the product was stable until seven days at ambient stor-
ge conditions. Mahcene et al. (2020) assessed the preservative effect
f sodium alginate-based edible film incorporated with essential oil on
omemade cheese, and they concluded that edible packaging is an ef-
ective preservation method of cheese. 

Martins et al. (2010) evaluated the shelf-life extension of Ricotta
heese, a soft Italian cheese, during cold storage (4°C) upon using
alactomannan-based edible coatings in combination with nisin (50 IU
–1) against Listeria monocytogenes. Authors found that edible coatings
ith nisin delay the microbial growth significantly (P < 0.05), increased

he tensile strength (0.84 to 1.46 MPa), increased the opacity (3.68
o 4.59%), improved the elongation breakpoint (50.93 to 68.16%), in-
reased the CO 2 permeability (1.96 to 6.31 ×10 12 ) cm 

3 . (Pa.s.m) − 1 ), and
ecreased the O 2 permeability (1.84 to 1.35 ×10 − 12 ) cm 

3 ) x (Pa. s.m) − 1 ).
imilarly, whey protein (10% w/w) based coating in combination with
hitooligosaccharide (20g L − 1 ) and lactic acid (6g L − 1 ) potentially in-
ibited the microbial growth ( < 2.0 cfu/g) on laboratory manufactured
heese after 60 days long storage at 10°C ( Ramos et al., 2012 ). 

.3. Meat and meat products 

Meat and meat products are considered favorable food among con-
umers due to their unique taste and nutritional benefits. Nevertheless,
eat is highly susceptible to spoilage due to microbial and chemical

hanges; therefore, its preservation requires special attention. Advanced
ackaging techniques such as intelligent and antimicrobial packaging
ave emerged as food safety hurdles technology primarily for the prod-
cts like meat ( Soni et al., 2018 ). The edible packaging concept is gain-
ng much popularity among meat and meat products due to its signifi-
ant role in improving physicochemical and sensory properties ( Galus
 Kadzi ń ska, 2015 ). Research progress in applying edible film in meat
nd meat products was briefly summarized in Table 3 (C). 

Essential oils have become more widely used in edible films due
o their antioxidant and antimicrobial properties in recent years.
oradi et al. (2016) assessed the antimicrobial effects of zein-based
lms in combination with Zataria multiflora Boiss. essential oil (ZEO)
3%) and monulaurin (1%) against E. coli O157: H7 and Listeria mono-

ytogenes in vitro and minced beef. The authors found that ZEO sig-
ificantly enhanced the antimicrobial activity of the film. Similarly,
erulago Angulate Essential Oil (FAEO) (0.05%) incorporated with
elatin-chitosan-based film inhibited the microbial growth and im-
roved the shelf life of turkey meat ( Naseri et al., 2020 ). 
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.4. Seafoods 

Seafood, which includes fish and fish products, generally has a lim-
ted shelf life due to the rapid growth of microbes, which can pose a
hreat to consumers’ health as well as result in economic loss. ( Gómez-
staca et al., 2010 ; López de Lacey et al., 2014 ). In recent years, the ed-
ble packaging concept is evolved as an efficient strategy to enhance the
torage stability of fish ( Günlü & Koyun, 2013 ). Successful application
f several polysaccharides such as chitosan ( Remya et al., 2016 ), sodium
lginate-carboxy methylcellulose ( Rezaei & Shahbazi, 2018 ), whey pro-
ein ( Seyfzadeh et al 2013 ), etc., which various researchers have already
xplored. Some of the recent progress and their major findings are given
n Table 3 (C). 

The edible film/coatings, which are primarily chitosan-gelatin based,
ffectively preserve the desired quality, extend the shelf life, and im-
rove the texture and color of sea and meat products by reducing
poilage, reducing the accumulation of volatile compounds and oxida-
ion substances, and minimizing weight loss. Castro et al., (2019) , veri-
ed the potential of whey protein concentrate film in combination with
reen tea extract applied on fresh salmon and found that their combi-
ation effectively delayed the lipid oxidation of fresh salmon until the
ourteen days of storage. The incorporation of essential oils into edible
lms due to their antioxidant and antimicrobial activity has been more
ocumented in the past few years. Ginger essential oil incorporated with
sh sarcoplasmic protein and chitosan applied to red sea bream signifi-
antly reduced the oxidation, protected from microbial degradation, and
xtended shelf life of the red sea bream ( Cai et al., 2020 ). 

. Safety and regulation for edible films 

Food safety and regulation vary from country to country. Accord-
ng to EU and US regulations, edible film and coating can be consid-
red food ingredients, additives, contact materials, or packaging mate-
ials. As a result, the constituents used for its formulation should have
enerally Recommended As Safe (GRAS) status as per the regulations
f the Food and Drug Administration (FDA) regulation ( Dhall, 2013 ).
evertheless, there are chances for the transformation of FFS into toxic

ubstances due to changes that occur during the film development pro-
ess ( Giteru et al., 2020 ). Different cross-linking agents used for en-
ancing the film properties and interaction with gastrointestinal sub-
tances can also trigger the formation of toxic materials ( Chiralt et al.,
018 ). In one study ( Ro șu et al., 2017 ), the effect of graphene oxide
nd its derivatives on the cytotoxicity of the methylcellulose-based film
n human lungs was investigated, and lower toxicity was reported for
educed graphene oxide compared to graphene oxide. The effect of
odification techniques and ingredient selection plays a critical role

n edible film safety but is rarely reported in edible film studies. More-
ver, the addition of nanomaterials in the film may cause several tox-
cological effects on human bodies, as explained in section 2.5 . At
resent, there is no specific legislation for nanomaterial use in food
ackaging, and the recommendations differ by nation. As per the guide-
ines of the Institute of Food Science and Technology (IFST) in the
nited Kingdom, nanomaterials should be considered hazardous un-

ess clear safety proof is available ( Jeevahan et al., 2020 ). Accord-
ng to EU and Switzerland legislation, information on nanomaterial
isk and/or legally binding definitions of nanomaterial need to be pro-
uced. Labeling the presence of nanomaterials in a specific film is crit-
cal for communicating risk elements to consumers. In EU definitions,
ize is used as an identifier for nanomaterials in regulatory purposes
 Bizymis & Tzia, 2021 ). The USFDA publishes a list of food ingredients
nd contact substances and advises manufacturers to research and de-
elop a toxicological profile for each container containing nanomaterial
 USFDA 2014 ) . Most countries, presently, do not have any regulations
or the use of nanotechnology. More research on the nanomaterial’s tox-
cological effects can help formulate new safety and regulations for its
pplication. 
12 
. Recent trends, challenges, and future perspectives in edible 

lm 

The edible film research area is constantly evolving, with new
aw materials for film formation, active packaging development, nan-
technology applications, etc. All these efforts were targeted to de-
elop biopolymers having properties par with conventional synthetic
olymers and their economic production by utilizing agricultural by-
roducts as raw material. The development of active films has been iden-
ified as one of the primary focus areas in packaging research in the last
ecades, which enable the shelf-life extension of perishable fruits and
egetables by the addition of various antimicrobial and antioxidant com-
onents into their base polymer matrix ( Deng et al., 2020 ; Nair et al.,
020 ; Orozco-Parra et al., 2020 ). Active edible films have active inter-
ction with contained food and contribute health benefits to consumers
 Moradi et al., 2021 ). For example, Orozco-Parra et al. (2020) devel-
ped a synbiotic film from cassava starch with the incorporation of in-
ulin as a prebiotic molecule and L.casei as the probiotic bacteria. The
eveloped film has shown decreased viability loss of probiotic bacteria
uring simulated gastric condition study. 

Similarly, the successful use of edible film for the transport of pro-
iotic bacteria was also reported by other authors ( Ebrahimi et al.,
018 ; Soukoulis et al., 2017 ). In recent years food-processing by-
roducts-based edible films are gaining popularity. It allows the val-
rization of industrial by-products, and their low-cost helps develop
dible film economically. By-products of fruits and vegetable pro-
essing, marine food processing, and edible oil processing industries
roved the promising potential for the film preparations ( Aloui et al.,
019 ; Benbettaïeb et al., 2019 ; Hromi š et al., 2022 ; Moghadam et al.,
020 ; Shroti and Saini, 2022 Valdés et al., 2020 ). As explained in
he section 2.4 & 2.5 , the edible films with tailored properties have
een experimented with composite film formulation and nanotechnol-
gy application. Moreover, several attempts were also made to achieve
his goal by cross-linking various biopolymers ( Peng et al., 2021 ;
erramathi et al., 2021 ; Zhang et al., 2022 ). 

Despite all advantages, like all other newly developed technologies,
dible films also face great challenges that need to be overcome to
ake them a commercial success. Even though a number of ways are

xperimented to improve the properties of the film to make it on par
ith petroleum-based polymers, poor mechanical properties, weak re-

istance against water and gases, and insufficient physical properties
re the hurdle for its use in various food applications. Investigations
ere carried out to address these challenges by developing composite
lms and nanocomposite films. However, composite film production by
ultilayer approach tends to fail by delamination of layers, and time,

nergy, and cost requirement for the formation of the multilayer film
re high. Another crucial property of films is their heat sealability. The
ange of optimum sealing temperature is narrow for biobased films. So,
hances of undersealing and charring due to overheating are higher for
hese films. This negatively affects its applications in the formation of
ouches and covers. The main reason restricting the commercial appli-
ation of edible film technology is the inability to make large-sized films
 > 25cm), difficulties in maintaining the thickness, and a long-time re-
uirement for drying (2-3 days). Application of nanotechnology is con-
idered a trending area for edible films. Still, practical difficulties in
solation and homogeneous dispersion of nanomaterials in matrix poly-
ers and economic aspects always create a challenge. Moreover, a lack

f information on the toxicological effect of nanomaterial and other film-
orming components generates fear and reluctance in consumers. Only
imited studies were reported on the evaluation of how the aging of
he film affects its properties. Since the primary intended use of pack-
ging material is to contain the food and extend its shelf life during
torage, thus this factor needs to be considered ( Jeevahan et al., 2020 ).
mong the reported research on edible film, emphasis on sensory anal-
sis is relatively low. The sensory attributes of the film are the first
nd foremost important factor that decides the acceptance of the edible
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ackaging film. Ultimately consumer acceptance is the only deciding
actor in changing our packaging concept. For achieving its commer-
ial success, complete study and documentation are required to prove
ts biodegradability, organoleptic aspects, safety and security, and le-
al confirmation. In order to overcome these challenges, considerable
esearch efforts need to concentrate on the following essential aspects.
 detailed toxicological study of the film-forming components by em-
hasizing nanoparticles is required to be carried out. Any technology
n a laboratory scale cannot benefit the consumers. So, the method for
he production of the continuous edible film with consistent properties
eeds to be developed. Change in properties of edible film during ag-
ng and under different temperature and relative humidity conditions is
lso essential to confirm its utility in food storage purposes. Consumer
wareness programs and advertisements of edible films can also increase
heir acceptability. 

. Conclusion 

Edible films have been identified as a healthy source of food protec-
ion from various elements, as they are naturally occurring, inexpensive,
nd renewable. The possibility of incorporating functional ingredients
nd excellent biodegradability further glorifies its attraction. Extensive
esearch has been conducted to determine the best outcome and min-
mize drawbacks with new concepts such as composite film approach
nd nanotechnology application. More research on important aspects
ike property improvement, implementation of safety and regulation,
xploration of new and economic sources, and commercial scale-up by
ontinuous production is essential to its successful adoption. 
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