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Abstract: Interest in the development of smart and active biodegradable packaging materials is
increasing as food manufacturers try to improve the sustainability and environmental impact of
their products, while still maintaining their quality and safety. Active packaging materials contain
components that enhance their functionality, such as antimicrobials, antioxidants, light blockers, or
oxygen barriers. Smart packaging materials contain sensing components that provide an indication of
changes in food attributes, such as alterations in their quality, maturity, or safety. For instance, a smart
sensor may give a measurable color change in response to a deterioration in food quality. This article
reviews recent advances in the development of active and smart biodegradable packaging materials
in the food industry. Moreover, studies on the application of these packaging materials to monitor the
freshness and safety of food products are reviewed, including dairy, meat, fish, fruit and vegetable
products. Finally, the potential challenges associated with the application of these eco-friendly
packaging materials in the food industry are discussed, as well as potential future directions.

Keywords: smart materials; active packaging; colorimetric indicators; biodegradability; biocomposite
films

1. Introduction

Foods are packaged for a number of reasons, including to protect them from their
environments, improve their quality and safety, increase their shelf life, and facilitate their
handling, storage, and transport [1,2]. Traditionally, the packaging materials used for this
purpose have been fabricated from synthetic polymers, such as polyamide, polypropylene,
polyethylene terephthalate, ethylene vinyl alcohol, polystyrene, and polyvinylchloride.
These synthetic polymers are particularly suitable for producing packaging materials
because of their beneficial physicochemical and functional attributes, such as mechanical
robustness, pliability, optical traits, and barrier properties [1]. As a result, their industrial
production has continued to rise over the past few decades, with around 320 million tons
currently being produced each year [1,3]. However, the widespread use of synthetic plastics
for this purpose has undesirable environmental consequences, since this type of packaging
material can persist in the environment for extended periods and can form microplastics or
nanoplastics when it degrades that contaminate water, soil and food [1,3].

For these reasons, there has been growing interest in using natural polymers, such as
polysaccharides and proteins, often in combination with other natural components (such
as lipids, phospholipids, surfactants, or natural nanoparticles), to fabricate biodegradable
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packaging materials [4–6]. Indeed, the increasing research activity in this area can be
seen from the number of scientific articles published on packaging materials made from
biopolymers versus those made from plastics (Figure 1). The utilization of biopolymers
for this purpose is often advantageous because they are more biodegradable, sustainable,
and environmentally friendly than synthetic polymers [3,7,8]. In particular, biopolymer-
based films can easily be degraded by microorganisms and some inorganic compounds
in the environment [9–11]. A wide variety of biopolymers have been explored for this
purpose, either alone or in combination, including cellulose, chitin, chitosan, pectin, agar,
alginate, carrageenan, gelatin, zein, and whey protein [8,12,13]. One of the major challenges
associated with the development of biodegradable packaging materials from biopolymers
is to create films that have mechanical, optical, and barrier properties that match those
normally provided by synthetic polymers [14,15]. For instance, biodegradable films may
breakdown when they come into contact with moist foods or environments for extended
periods, thereby losing their desirable functional attributes [9–11]. Researchers are therefore
examining new biopolymers and their combinations in an attempt to overcome these
problems. Biopolymer-based packaging materials with good functional attributes can often
be prepared in the laboratory, but it is usually difficult to achieve this economically on a
large-scale, which currently limits their commercial application.

Figure 1. Trends in the number of scientific articles published on biopolymer-based versus synthetic
plastic-based packaging materials (upper graph) and on smart packaging versus active packaging
materials (lower graph). The search was carried out using Scopus and Web of Science in March 2021.

Many researchers are attempting to extend the functional performance of biopolymer-
based packaging materials by creating active and/or smart films. Active packaging materi-
als contain additives, such as antioxidants or antimicrobials, that can improve the quality,
shelf-life or safety of foods by inhibiting chemical reactions or microbial growth [15]. Smart
packaging materials are designed to respond to a specific trigger, such as a change in pH,
temperature, moisture content, gas levels, light exposure, chemical composition, or enzyme
activity [16,17]. For instance, they may contain a natural pigment that undergoes a color
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change in response to one of these triggers, which can then be used to report alterations in
the ripeness, quality, or safety of a food [11]. Alternatively, the packaging material may
respond to a trigger by releasing active ingredients, such as antioxidants or antimicrobials,
that then diffuse into the food and protect it.

An important advantage of using biopolymers to create packaging materials is that
waste streams from the food industry can be converted into value-added functional in-
gredients, thereby reducing waste, increasing sustainability, and improving economic
viability [18]. Many of the by-products generated by the food industry are currently used
either as animal feed or simply discarded, leading to waste and pollution [19,20]. Examples
of these by-products include tomato pulp, vegetable peels, fruit peels, pruning waste, and
slaughterhouse waste [10]. Many of these by-products are rich sources of polysaccharides,
proteins, and/or lipids, as well as other functional ingredients such as antimicrobials,
antioxidants, and pigments, and are therefore a suitable source of value added ingredi-
ents [9,11]. Some of the potential advantages of biopolymer-based packaging materials
over plastic ones are highlighted in Figure 2.

 

 

Figure 2. Comparison of the properties of biopolymer-based and synthetic plastic-based packaging materials.

In this article, we review recent developments in the design and formulation of smart
and active biopolymer-based food packaging materials, including discussions of the pro-
teins, polysaccharides, and lipids that can be used for this purpose, the fabrication methods
available, as well as the potential application of these materials in the food industry.

2. Overview of Biodegradable Packaging Materials

Food packaging is used to protect food products from physical, chemical, or biological
stresses in their environment, thereby improving their quality and extending their shelf life.
A variety of packaging materials have traditionally been used for this purpose, including
plastic, glass, metal, paper, wood, and textiles [1,2]. As mentioned earlier, some of the
most widely used of these packaging materials, particularly plastics, cause considerable
environmental damage during their manufacture and after their disposal. For this reason,
there has been great interest in developing biodegradable forms of packaging materials
that are more sustainable to produce, that rapidly decompose after disposal, and that
do not cause as much environmental pollution [21]. These packaging materials can be
constructed from biodegradable film-forming materials such as proteins, polysaccharides,
and lipids. Moreover, their functional performance can be enhanced by incorporating
organic or inorganic nanoparticles or nanofibers [22,23]. For instance, nano-forms of clay,
iron oxide (Fe2O3), titanium dioxide (TiO2), silver (Ag) and zinc oxide (ZnO) can be used
(inorganic nanoparticles), as well as nano-forms of chitin and cellulose and their deriva-
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tives (organic nanoparticles) [24–28]. The resulting nanocomposites often have enhanced
technofunctional characteristics such as improved optical, mechanical and barrier prop-
erties, as well as some novel functional attributes, such as antimicrobial and antioxidant
activities, that can prolong the shelf life of packaged foods [29–31]. Moreover, it is possible
to incorporate sensing materials into biodegradable films to provide information about
the quality, freshness, or safety of packaged foods. Table 1 and Figure 3 show the main
characteristics of active and smart biodegradable packaging materials.

In the remainder of this section we highlight a number of the most commonly used
biodegradable materials that can be used to assemble packaging materials suitable for use
in the food and other industries.

β

 
Figure 3. Characteristics, classification, and application of smart and active packaging materials.
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Table 1. Main characteristics of active and smart biodegradable packaging films.

Polymer(s)/Biopolymer(s) Active Material(s)
Smart/or Active

Packaging

Characteristics of Packaging Films
Thermal Ref.

Physical Mechanical Barrier Optical

WS MC WCA Th TS EB YM WVP OP T600/Op Color

Chitosan/poly (vinyl alcohol) Boswellic acid Active + − + ± + − + − − −/+ − − [32]

Gelatin
Grapefruit seed

extract/TiO2 NPs
Active N N − + − + − + N −/+ + − [33]

Poly(lactide)/poly(butylene
adipate-co-terephthalate)

Ferulic acid Active N N − + + − + N N −/+ N − [34]

Poly(lactic
acid)/poly(butylene-succinate-

co-adipate)
(PLA/PBSA)

Thymol EOs Active − − N + − + − − − − N − [35]

Starch Yerba mate extract Active − − N + + + − − − N N N [36]

Poly(vinyl alcohol)/clay Tea polyphenols Active − − ± ± + − N − − −/+ + N [37]

Chitosan/gallic-acid ZnO NPs Active − − N + − + N − − −/+ N N [38]

Corn starch/chitosan
Grapefruit seed

extract
Active + + N + − + − − − N N − [39]

Gelatin Silver-Kaolin NPs Active − − + + + − + − N −/+ N N [40]

Sodium caseinate/guar gum
TiO2 NPs/cumin

EOs
Active − N − + + ± + ± N −/+ N − [41]

Methyl cellulose/chitosan
nanofibers

Saffron petal
anthocyanins

Smart − − N + + + − − N − + − [42]

Cassava starch Blueberry residue Smart + + + ± − + − ± + −/+ + − [43]

Chitosan
Black soybean seed

coat extract
Smart + − N + + + N − N + + − [44]

Gelatin
Red cabbage

(Brassica oleracea L.)
extracts

Smart + − N + + + − + N + − N [45]
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Table 1. Cont.

Polymer(s)/Biopolymer(s) Active Material(s)
Smart/or Active

Packaging

Characteristics of Packaging Films
Thermal Ref.

Physical Mechanical Barrier Optical

WS MC WCA Th TS EB YM WVP OP T600/Op Color

Chitosan
Purple-fleshed sweet

potato extract
Smart + − N + − − N + N − − − [46]

Agar
Arnebia euchroma

root extracts
Smart − − + − + + + + N − + N [47]

Gelatin Curcumin Smart ± ± N + − + − − N −/+ + N [48]

k-carrageenan Curcumin Smart N N N + + − + − − − + + [49]

Chitosan
Blueberry and

blackberry
pomace extracts

Smart ± − N ± ± − + − ± + ± N [19]

Chitosan Alizarin Smart N N + + − + + − − + − + [50]

WS: water solubility, MC: moisture content, MA: moisture absorption, WCA: water contact angle, Th: thickness, TS: tensile strength, EB: elongation at break, YM: Young modulus, WVP: water vapor permeability,
OP: oxygen permeability, T600: transparency, Op: opacity; NPs: nanoparticles, EOs: essential oils. N: Not analyzed. (±): variable, (+): increase, (−): decrease.
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2.1. Biodegradable Materials

Biodegradable materials for constructing packaging materials can be obtained from
plant, animal, or microbial sources. It is important that these materials can be produced
economically and sustainably, and that they quickly degrade when disposed of in the
environment, usually as the result of natural chemical or biochemical processes [51]. In
this section, we provide a few examples of edible materials that can be used to fabricate
biodegradable packaging materials.

2.1.1. Proteins
Dairy Proteins

Dairy proteins, such as casein and whey protein, have been shown to be capable
of forming biodegradable packaging materials. Caseins, which come in various types
(including αS1, αS2, β, and κ caseins), make up around 80% of the proteins in milk [25,41].
These proteins are fairly flexible proteins that tend to aggregate around their isoelectric
point (pH 4.6), which is important for many of their functional attributes. In the food
industry, these proteins are usually available in the form of powdered calcium or sodium
caseinate ingredients, which are formed by adding Ca(OH)2 or NaOH to casein solutions,
respectively [52]. Edible films have been formed from caseinate that have favorable me-
chanical and optical characteristics [53]. Whey proteins, which also come in various types
(including β-lactoglobulin, α-lactalbumin, bovine serum albumin, and immunoglobins),
make up around 20% of the proteins in milk [52]. They are globular proteins that have
also been shown to be effective at forming films due to their good gelling properties. For
instance, films made from whey protein isolate (WPI) have been reported to have good
mechanical and oxygen barrier properties under low and intermediate relative humidity
(RH) conditions [54]. However, these films exhibited poor water vapor barrier properties,
which limits their application as packaging materials for many foods. The formation of
films with appropriate functional attributes requires careful control of the denaturation,
association, and crosslinking of the whey proteins [55,56]. Typically, films made from
milk proteins tend to be relatively soft, smooth, tasteless, and clear, which is desirable for
many applications. Moreover, they can also be made to have antimicrobial and antiox-
idant activity by encapsulating functional additives within them [57]. One of the main
challenges of this kind of packaging material is their poor resistance to moisture transport
and their fragility.

Meat Proteins

Gelatin is one of the most commonly used meat proteins for forming biodegradable
films. It is isolated from waste products of the meat industry, such as the collagen-rich
bones, skin, tendons, and hooves of animals [58]. Typically, collagen is converted to gelatin
by heating in a strong acid or alkaline solution at high temperatures (e.g., 80 ◦C) [59]. The
gelatin obtained from this process is purified and then converted into a powdered form
that is used as a functional ingredient in the food and other industries. Gelatin exists
as a random coil molecule at high temperatures but undergoes a coil-to-helix transition
when it is cooled below a critical transition temperature. The helices formed may then act
as crosslinking points between different gelatin molecules due to hydrogen bonding. At
sufficiently high concentrations, the gelatin molecules form a 3D network that leads to
solid-like properties. Gelatin gels are typically formed by heating a gelatin solution above
the coil-to-helix transition temperature (typically around 20–30 ◦C for terrestrial animals
and lower for fish), and then cooling and drying the solution, which increases the protein
concentration and promotes crosslink formation [60,61]. Gelatin films can be formed with
thicknesses and mechanical properties suitable for use as food packaging materials, but
they often have poor barrier properties, especially against water vapor transport [62,63],
which limits their practical applications.
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Plant Proteins

Many different kinds of plant protein are available to produce biodegradable films,
including those isolated from zein, gluten, soybeans, nuts, peas, and sunflower [64]. Zein
is a hydrophobic corn protein that is insoluble in water but soluble in concentrated alcohol
solutions, which is important for the formation of edible films [65]. Previously, zein has
been used as a constituent of packaging materials for various foods [66,67]. The proteins
isolated from soybeans have also been shown to be suitable for forming edible films [68],
which is often carried out using film casting or baking methods [69]. Smooth and stretchable
edible films can be formed from soy proteins that have good mechanical properties, but
again their water barrier properties tend to be poor [70]. The water barrier properties of
soy films can be improved by incorporating hydrophobic additives into them, such as
stearic acid, but this also modulates their optical and mechanical properties [71]. Other
additives, such as glycerol, gellan gum or κ-carrageenan, have also been shown to improve
the functional performance of soy films [72].

2.1.2. Polysaccharides

Polysaccharides such as starch, cellulose, chitin, chitosan, and hydrocolloid gums,
have also been used as components to construct biodegradable films [4,6]. These polysac-
charides differ in their molecular characteristics, which alters the physicochemical and
functional attributes of the packaging materials constructed from them

Starch

Starch is widely used because of its relative cheapness, abundance, biodegradability,
and renewability [73]. In nature, starch molecules are packed into small granules (around 1
to 20 µm) that consist of amylose and amylopectin molecules organized into concentric
amorphous and crystalline rings [74]. Edible films made entirely from starch have a high
water vapor permeability and weak mechanical properties, which limits their usage [75].
For this reason, researchers have examined the impact of incorporating other additives
to improve their functional performance. For instance, starch has been combined with
polyvinyl alcohol to produce a film with good barrier properties against water, thereby
extending its potential for commercial applications as a food packaging material [76].

Cellulose

Cellulose is the most abundant source of functional polysaccharides in nature, which
is usually obtained from wood or cotton using acid hydrolysis processes [77]. Cellulose and
its derivatives, such as methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), and
carboxymethyl cellulose (CMC), have been widely explored for their potential in forming
biodegradable films [78,79]. For instance, films with good mechanical and water solubility
characteristics have been produced using CMC [80]. However, other studies have reported
that cellulose-based films act as poor water vapor barriers, which limits their application in
foods [81].

Chitin and Chitosan

Chitin is the second most abundant polysaccharide found in nature, while chitosan is
produced from chitin using controlled de-acetylation reactions [51]. Chitin and chitosan
have both been shown to be capable of forming biodegradable films that can be used
to increase the shelf life of food products [82]. Typically, the films formed by chitin are
mechanically weaker and have worse barrier properties than those formed by chitosan. As
with other biopolymers, the functional performance of chitin and chitosan films can be
improved by combining them with proteins or other polysaccharides, or by incorporating
other functional additives [28,42]. The fact that both chitin and chitosan naturally exhibit
antimicrobial activity is useful for the development of active biodegradable films that can
increase the shelf life of foods [42,51].
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Hydrocolloid Gums

A variety of edible hydrocolloid gums can be used to form biodegradable packaging
materials. Pectin is an anionic polysaccharide consisting of a linear anionic chain with
neutral side chains attached to certain regions [10,13]. Commercial pectin ingredients are
typically isolated from apple, citrus fruit, or sugar beet. Pectin is widely used in the food
industry as a stabilizer, thickening agent, gelling agent, and film former [83]. Studies have
shown that pectin can form films that are relatively strong and have good resistance to
oxygen diffusion, but are fragile and have poor resistance to water diffusion [84]. Pectin
films have been shown to be able to protect foods with relatively low water activities [85].
They have also been reported to increase the shelf life of a wide range of fruits and
vegetables, including apple, apricot, avocado, berries, guava, chestnuts, melon, peach,
walnuts, papaya, tomato, and carrot [86]. Pectin is often preferred for these applications
because it can be naturally derived from fruits and vegetables. Nevertheless, numerous
other kinds of hydrocolloid gums can also be utilized to create biodegradable films because
of their ability to form crosslinks with each other, including agar, alginate, carrageenan and
gum arabic [87,88].

2.1.3. Lipids

A number of lipids can be used to assemble biodegradable films, either in isolation
or in combination with other components, including monoacylglycerols, diacylglycerols,
triacylglycerols, phospholipids, free fatty acids, and waxes [89–91]. Lipid-based films have
advantages for creating a glossy surface appearance, retaining moisture in foods, and
reducing water permeability [92,93]. For instance, films produced from palm fruit oil have
been reported to be transparent and have good water barrier properties [94]. Sunflower
oil-based films have been used to coat hamburgers, which were shown to improve their
quality by controlling oxygen and water vapor permeability [95]. Essential oils (EOs)
isolated from the peels of citrus fruit (such as lemon, mandarin, and orange) have been
incorporated as functional ingredients into methylcellulose and chitosan films to enhance
their functionality [96]. Antimicrobial essential oils from cinnamon, allspice, and clove
bud have also been incorporated into edible films to protect apples during storage [97]. In
many cases, lipids are converted into an oil-in-water emulsion by homogenizing them with
an aqueous solution containing an emulsifier prior to incorporating them into biopolymer-
based films. The composition, size, concentration, and interfacial properties of the lipid
droplets used impacts the mechanical, optical, barrier and other functional attributes of the
films formed, and should therefore be optimized for each application [94].

3. Fabrication of Packaging Materials

In this section, a brief overview of the various methods commonly used to produce
biodegradable packaging materials is given, including casting, electrospinning, extrusion,
and compression methods [51,98,99]. The casting method is the most widely used in
research laboratories for the small-scale production of biodegradable packaging materials
from food-grade ingredients [51]. Typically, the film-forming biopolymers are dissolved
within a solution and then any functional additives are incorporated (such as plasticizers,
nanoparticles, nanofibers, phytochemicals, or emulsified lipids). These mixtures are then
cast in petri dishes and placed in a vacuum oven to remove the water or other solvents
(e.g., 50 ◦C for 48 h). The resulting films are then often stored in desiccators at a fixed
relative humidity before they are characterized and utilized [100]. Although this method is
widely used in scientific research, it is typically unsuitable for the large-scale production of
packaging materials. However, it is useful for identifying potential formulations that could
be produced using other methods once a suitable scale-up procedure has been established.

Electrospinning processes are also commonly used in research laboratories but may
also be used on an industrial scale [101]. In this case, a solution containing the film-forming
biopolymers and additives is placed into a syringe. A high voltage is applied between
the syringe tip and a collection plate. The mixture is pulled out from the syringe tip
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and forms a thin stream, which is dried as it passes through the intervening air. As a
result, fibers are deposited onto the collection plate, which can then be further dried by
holding them at an elevated temperature [102]. This method tends to produce highly
porous fiber films containing interconnected pores with a high specific area [103,104]. The
composition and structure of these films can be controlled by changing the ingredients and
operating conditions used [104]. The delicate fibrous mats produced by electrospinning
may be suitable for some packaging applications but are less suitable for forming thin
films [99,104].

Extrusion methods can be used to make biodegradable packaging materials on a small
or large scale. They involve applying high temperatures, pressures, and shear forces to
mixtures of biopolymers and other additives to blend and plasticize them. The resulting
material is then forced through a narrow die with the required shape. The nature of
the films produced depends on many factors, including the biopolymers, additives, and
processing conditions used, including the operating temperatures, pressures, and shearing
rates [105]. Glycerol is often used as a food-grade plasticizer because of its good thermal
stability. Extrusion is particularly suitable for the large scale production of packaging
materials because it can be carried out as a continuous process at large scales [106].

Biodegradable films can also be produced at small and large scales using compression
molding methods [51,98]. In this process, the film-forming biopolymers and other additives
are mixed together and then placed into a suitable mold. The film may then be formed by
compression of these mixtures to promote curing, that is, crosslinking of the biopolymers.
In cold compression, the curing procedure takes place at room temperature, while in hot
compression it takes place by applying heat to the mold during compression [107].

The selection of an appropriate fabrication method depends on the nature of the
ingredients used, the desired attributes of the final packaging materials, and the amount of
material that needs to be produced. The casting method can be used with most biopolymers
albeit at a small scale, but the other three methods can only be used for certain types of
biopolymers. For example, the electrospinning method can only be used for electrically
charged biopolymers that can be pulled through a nozzle. The extrusion method is unsuit-
able for biopolymers that chemically degrade at high temperatures, pressures, or shear
rates. The compression methods are only suitable for biopolymers that set when they are
compressed or compressed/heated [51,98,99].

4. Active Packaging Materials

Active food packaging materials are designed to have functional attributes that go
beyond the normal optical, mechanical, and barrier properties of conventional packag-
ing materials. For instance, they may be designed to inhibit microbial growth, to re-
tard undesirable chemical reactions, or to control enzyme activity, thereby extending the
shelf life of foods [108,109]. Typically, this is achieved by incorporating antimicrobials
and/or antioxidants agents into the packaging materials, with a particular emphasis on
the utilization of natural botanically-derived functional ingredients for clean labeling
purposes [7,25,110–112]. One of the potential advantages of active packaging materials is
that the antioxidants and antimicrobials are located within the film, rather than within the
food, which may reduce the amount of these additives required to protect the food during
storage, as well as reducing the amount ingested [108,109,113,114].

The additives incorporated into active packaging materials may increase the shelf life
of packaged foods by a range of different mechanisms depending on their characteristics.
Some of the most common additives that exhibit antimicrobial or antioxidant properties
that are used for this purpose include macronutrients (such as specific protein or carbo-
hydrate molecules), inorganic nanoparticles (such as Ag, TiO2, ZnO, and clay), organic
nanoparticles (such as lipid-, protein-, or carbohydrate-based nanoparticles), essential oils
or other extracts from plants (such as thyme oil or tea extract), and phytochemicals (such
as curcumin, quercetin, or anthocyanins). A number of these additives are discussed in
more detail in the following sections.
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4.1. Antioxidants

The reason for incorporating antioxidants into food packaging materials is to in-
hibit oxidation reactions in foods, particularly degradative reactions that involve lipids
or proteins [111,115]. Typically, antioxidants inhibit oxidation by neutralizing singlet oxy-
gen, reducing hydrogen peroxide, quenching free radicals, or chelating transition metal
ions [108,115–117]. Botanical extracts from a wide range of plants including saffron, garlic,
cabbage, potatoes, tomatoes, and strawberries have been used as natural antioxidant addi-
tives in active packaging materials [108,118–120]. These extracts contain various classes of
molecules that can exhibit antioxidant activity [113,121]. For instance, epigallocatechin and
epigallocatechin gallate were shown to have the highest antioxidant activity in green tea
extracts [122]. Another study examined the antioxidant activity of various kinds of plant
extracts in gelatin films, including ginger, grape seed, green tea, and ginkgo leaf extracts
using a DPPH radical scavenging assay [123]. This study showed that ginkgo leaf extracts
had the most potent antioxidant activity.

Anthocyanins are water-soluble pigments that are naturally abundant in many plants
and their by-products, including flowers, cereals, vegetables, and fruits [108]. These natural
phenolic compounds also have excellent antioxidant and antimicrobial properties [14,16].
Anthocyanins have been shown to play promising antioxidant roles in active packaging
materials as a reducing agent and an oxygen suppressor [14,108]. The potency of these
antioxidants depends on various factors, including the type of anthocyanin used, the
composition of the biopolymer matrix, and the method of film preparation [14,115].

Essential oils are another group of botanical compounds that have strong antioxidant
and antimicrobial properties, which consist of a complex mixture of phenolic, terpene, and
terpenoid compounds [113,124]. Essential oils have been classified as Generally Recognized
as Safe (GRAS) and so can be used in active food packaging materials as functional ingredi-
ents [125,126]. Essential oils such as carvacrol, cinnamon, thyme, rosemary, citrus, and tea
oils can be extracted from botanical sources by distillation [109,127]. Incorporation of these
essential oils into packaging materials can enhance their physicochemical and mechanical
properties, as well as their antimicrobial and antioxidant properties [26,125]. Carvacrol is
the main antimicrobial component found in oregano oil, which has been shown to increase
the permeability of microbial cell walls, thereby resulting in their death [108]. A synergistic
antimicrobial effect against strawberry gray mold has been reported when carvacrol was
used in combination with thymol in clay/polymer nanocomposite films [128]. Essential oils
have also been used in combination with other kinds of inorganic nanoparticle additives
in biopolymer packaging materials, such as those comprised of titanium oxide (TiO2),
zinc oxide (ZnO), and silver (Ag), to improve their antimicrobial and antioxidant prop-
erties [109,113,125]. A combination of rosemary oil and TiO2 nanoparticles incorporated
into a biopolymer packaging material has been reported to significantly reduce lipid oxi-
dation and microbial growth [113]. Incorporating inorganic nanoparticles into packaging
materials has been shown to eliminate the characteristic odors associated with essential
oils. For instance, it was reported that the incorporation of carvacrol oil into packaging
materials led to an unacceptable odor [129], which could be reduced by also incorporating
ZnO NPs [130,131].

4.2. Antimicrobials

The incorporation of antimicrobial substances into active packaging materials is
advantageous because it can be used to inhibit the growth of spoilage or pathogenic mi-
crobes [12,108]. Natural antimicrobial substances, such as essential oils (cloves, oregano,
thyme, rosemary oils) and plant extracts (barberry, saffron, potatoes, strawberries, garlic,
tomatoes, lettuce, and cabbage extracts) can be included into biodegradable packaging
materials [42,79,108,119,132,133]. These antimicrobial substances may remain in the pack-
aging materials or they may diffuse into the foods during storage [108,114]. Ideally, the
rate at which the antimicrobials move into the foods can be controlled so as to prolong
their activity. Antimicrobial substances can be immobilized on the surfaces of package
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materials or they can be incorporated throughout them [108,109]. Some natural antimi-
crobial substances are sensitive to heat, so their antimicrobial activity may be lost during
thermal processing. In this case, non-thermal fabrication methods such as electrospinning,
solvent evaporation, or casting methods should be used to prepare this type of packaging
material [131]. Anthocyanins have been shown to have good antimicrobial properties in
active packaging materials, which has been attributed to their ability to penetrate the cell
membranes, inhibit extracellular enzymes, and breakdown the cytoplasmic membranes of
microorganisms [110].

Various other kinds of natural antimicrobial agents have been investigated for their
potential incorporation into active packaging materials [134]. For instance, incorporating
eugenol into gelatin films increased their antibacterial activity, with a reduction of microbial
growth, as expressed as colony forming units (CFU), of around 2.5 log units for S. aureus
and 3 log units for E. coli compared to the control group [135]. In another study, it was
shown that incorporation of tomato extract and itaconic acid into films comprised of
chitosan and poly(vinyl alcohol) reduced improved their antibacterial activity against
P. aeruginosa and S. aureus [136]. Active packaging materials have also been developed
to reduce contamination by other kinds of microbes, including viruses and fungi [137].
For example, the incorporation of a tea extract into chitosan-based films was shown toa
increase their antiviral activity against murine norovirus (MNV-1) [138]. In another study,
incorporation of silver into polylactic acid films was shown to increase their activity against
feline virus (FCV), another surrogate for human norovirus, with no infectious FCV being
detected in lettuce samples incubated at 4 ◦C for 6 days [139]. Packaging materials with
antifungal activity have also been developed. For instance, incorporating cinnamaldehyde
into gliadin-based films reduced food spoilage by inhibiting the growth of Aspergillus niger
and Penicillium expansum on bread and shredded cheese [140].

4.3. Gas Controllers

Oxygen molecules can permeate through food packaging materials and accelerate
oxidation and discoloration reactions in packaged foods [141]. Consequently, it is important
to have methods to control oxygen levels in foods. Oxygen-scavenging agents, such
as iron acids, sulfites, catechols, ascorbic acid, unsaturated hydrocarbons, palladium,
tocopherols, and enzymes (glucose oxidase), can be used as oxygen depleting agents [141].
Other methods of inhibiting the adverse effects of oxygen include the use of botanical
substances such as flavonoids, phenolics, salicylic acid, and gallic acid [124,142]. These
compounds can sometimes be obtained from waste streams of food processing operations,
which improves the economics and sustainability of the food supply [143]. To inhibit
oxygen, a substance should have a number of desirable structural features, including the
presence of carbon-carbon and carbon-oxygen double bonds, and the presence of hydroxyl
groups [108,141,143].

Ethylene gas (C2H4) is naturally produced by fruits and vegetables during respira-
tion [144], which impacts their ripening, color, texture, and quality [108]. It is therefore
important to be able to control the ethylene gas content in packaged produce during stor-
age. In general, ethylene levels can be controlled by incorporating substances that absorb,
oxidize, or decompose the gasses produced by fruits and vegetables [145]. Compounds
that can remove and adsorb ethylene gas include potassium permanganate (KMnO4),
clay, palladium, activated carbon, and titanium dioxide [144]. These kinds of additives
can be used individually or in combination to obtain synergistic effects. For instance,
nanocomposite films have been prepared from chitosan, TiO2 nanoparticles, and black
plum peel extract, which were shown to have good antioxidant, antimicrobial, and ethylene
scavenging properties [146].

In general, the optimization of an active packaging material for a particular application
depends on several factors, including the water activity, composition, and pH of the food
product, as well as the temperature and relative humidity of the environment during
storage [147]. In addition, the packaging materials must be formulated so that they have
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desirable physicochemical and functional properties, such as optical, mechanical, barrier,
sensory, and other attributes. The results of some recent studies on the development of
active packaging materials are summarized in Table 2, while the growing number of articles
published in this area is highlighted in Figure 1.

Table 2. Examples of the application of active packaging materials fabricated using the casting method in the food industry.

Packaging
Film Matrix

Active Additives Additive Functions Remarks Ref.

Chitosan
Pine needle extract
(Cedrus deodara)

Antioxidant/physical/oxygen/water
vapor permeabil-

ity/color/microstructures

Films showed high
antioxidant activity and

protected
oxygen-sensitive foods.

[148]

Chitosan
Flavanols (kaempferol,
quercetin, myricetin)

Antimicrobial/Antioxidant/water
vapor permeability/oxygen
permeability/UV–vis light

transmittance

Prevention of
microbial growth

[149]

Poly(lactic acid)/
Poly(ε-caprolactone)

EOs (thymol, carvacrol) Antioxidant

A PLA film impregnated
with thymol and carvacrol

had the best
antioxidant activity.

[150]

Chitosan Poly (vinyl alcohol)

Antimicrobial/ultraviolet blocking/
morphology/mechanical

properties/water
solubility/hydrophilicity

Films exhibited
antimicrobial activity

against Escherichia coli,
Staphylococcus aureus,
and Candida albicans.

[32]

Polylactic acid
EOs (thymol,
kesum, curry)

Antimicrobial/Morphology/
functional chemistry/thermal

stability/permeability

Films inhibited bacterial
growth and extended shelf

life of meats, fruits, and
vegetable products

[151]

Sodium lactate/
whey protein isolate

ε-Poly lysine Mechanical behavior/Antimicrobial

Films extended shelf-life by
reduction of total flora and

inhibiting lactic acid
bacteria growth

[152]

Chitosan/
Carboxymethyl

cellulose
ZnO nanoparticles

Antimicrobial/Physicochemical and
physical properties

Films had good activity
against gram-positive

bacteria and fungi
[153]

Chitosan
ethyl-Nα-dodecanoyl-

Larginate
Antimicrobial

Films exhibited
antibacterial activity

[154]

Poly(ε-caprolactone)
Oxidized regenerated

cellulose
Antimicrobial

Films reduced total
colony-forming units on
salami during storage.

[155]

LDPE/LLDPE Ag/TiO2 nanoparticles Antimicrobial

Nanoparticle addition
improved antimildew and
physicochemical properties

of films.

[156]

Polyvinyl chloride Ag nanoparticles Antimicrobial/ Antioxidant
Films inhibited bacterial

growth, reduced oxidation,
and extended shelf life

[157]

Sodium alginate ZnO nanoparticles Antimicrobial
Films reduced initial

bacterial count
[158]

Whey protein isolate
Lactoferrin, Lysozyme,

and the
Lactoperoxidase

Antimicrobial
Films extended shelf-life by
inhibiting bacterial growth

[159]
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5. Smart Packaging Materials

Smart packaging materials are designed to respond in a particular manner when
there is some change in the system (such as a change in quality, safety, or maturity of a
packaged food), or to provide an indication of these changes [16,160]. As a result, these
smart packaging materials can play an important role in improving food quality and safety
management [16,161]. Examples of the several smart packaging materials that have been
reported in the literature are highlighted in Table 3. In this section, some of the most
common sensors that have been developed for application in smart packaging materials
suitable for food applications are described.

Table 3. Examples of studies on the utilization of smart packaging materials fabricated by the solution casting method in
the food industry.

Packaging
Film Matrix

Colorant Agent/Source Trigger Remarks Ref.

Chitosan/
Polyvinyl

alcohol (PVA)
Anthocyanin/Red cabbage pH indicator

Additives increased tensile strength of
film and provided color indication of

pork spoilage during storage.
[162]

Chitosan/Starch/
Polyvinyl alcohol

Anthocyanin/Roselle calyx pH indicator
Color changes in film provided
indication of spoilage in pork.

[163]

Hydroxy propyl
methylcellulose/
κ-carrageenan

Anthocyanin/Prunus
maackii juice

pH indicator
Color changes in film provided

indication of spoilage.
[164]

Agar/Tapioca starch Anthocyanin/Red cabbage pH indicator
Color changes in film provided

indication of spoilage in sausage.
[165]

Cassava starch Anthocyanin/Blueberry residue pH indicator
Color changes in film provided

indication of spoilage.
[166]

Methylcellulose/
Chitosan nanofiber

Anthocyanin/Barberry (BA) pH indicator
Films underwent color changes when
exposed to different pH conditions.

[79]

Poly vinyl pyrroli-
done/CMC/Bacterial
cellulose/Guar gum

Anthocyanin/Red cabbage pH indicator

Anthocyanin addition improved
physicochemical properties of films and

were suitable as color sensors of
pH changes.

[167]

Gelatin/Gellan gum Anthocyanins/Red radish pH indicator
Films underwent color changes when
exposed to different pH conditions.

[168]

Chitosan/Pectin
Anthocyanin Hibiscus

rosa-sinensis
pH indicator

Color changes in film provided
indication of spoilage during storage.

[169]

Cellulose
acetate nanofibers

Alizarin pH indicator
Color changes in film provided

indication of spoilage.
[170]

Bacterial
cellulose nanofiber

Anthocyanin/Black carrot pH indicator
Films underwent color changes when
exposed to different pH conditions.

[171]

Glucomannan/
Polyvinyl alcohol

Betacyanin pH indicator
Films underwent color changes when
exposed to different pH conditions.

[172]

Methylcellulose/
Chitin nanofiber

Anthocyanins/Red barberry pH indicator
Color changes in film provided

indication of spoilage in fish and meat
samples during storage.

[28]

Artemisia sphaerocephala
Krasch. gum (ASKG)/

Carboxymethyl
cellulose sodium

Anthocyanins/Red cabbage
pH/Gas/volatile

compounds
indicator (NH3)

Color changes in film in response to pH
changes or NH3 production provided

indication of spoilage
[132]
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Table 3. Cont.

Packaging
Film Matrix

Colorant Agent/Source Trigger Remarks Ref.

Polylactide/
Poly hydroxybutyrate

β-carotene,
Chlorophyll,

Curcumin, Lutein
Temperature/Light

Color changes in film in response to
changes in temperature or

light exposure
[173]

Starch/
Polyvinyl alcohol

Anthocyanins/Roselle
Temperature/
pH indicator

Color changes in film in response to
changes in pH or light exposure

[174]

Agar
Arnebia

euchroma root
Temperature/

Freshness
Film changed color when fish spoiled. [47]

Chitosan/
Polyvinyl alcohol

Anthocyanins/
Red cabbage

Time/Temperature
The colorimetric film on pasteurized

milk shows visual color changes
to consumers.

[118]

Chitosan Chlorophyll Temperature
Film changed color when exposed to

elevated temperatures (>50 ◦C).
[175]

Cellulose
Anthocyanin/Ruellia

Simplex flowers
Time/

Temperature

Film changed color when exposed to
different temperatures: pink/blue (at

13 ◦C); purplish/blue (at 25 ◦C);
yellow/gray (at 40 ◦C)

[176]

Bacterial
cellulose nanofibers

Anthocyanin/Black carrot
Gas/volatile

ammonia
compounds

Film changed color in response to
gas production

[171]

Tara gum/
Polyvinyl alcohol

Curcumin
Gas/volatile
compounds

(TVBN, NH3)

Film changed color in response to
gas production

[177]

5.1. pH Indicators

This kind of indicator provides a measurable change when there is a significant
alteration in the pH of a packaged food. These pH changes may be caused by enzymatic
activity, chemical reactions, or microbial growth in foods, and so pH sensors can provide
an indication of alterations in food quality or safety [16,28]. Due to increasing demand
from consumers for clean-label products, the use of natural pigments is usually preferred
over synthetic dyes [178,179]. Several kinds of natural pigments undergo specific color
changes in response to an alteration in the pH of the surrounding medium. This type
of colorimetric pH-sensor, which is also referred to as a halochromic sensor, is typically
based on an exchange of protons (H+) between the pigments and their environment [180].
Some colorimetric indicators can also give a color change in response to the presence of
specific volatile compounds, which can also provide an indication of alterations in food
quality [17,181–183].

pH-sensitive indicators have been developed using anthocyanins derived from various
botanical sources, including saffron petal [42], black rice bran [184], hibiscus [185], purple
corn [186], black soybean seed coat [44], purple onion peel [187], roselle [163,188], red
barberry [28,79], blueberry [20,43], purple sweet potato [189,190], red cabbage [132,191],
as well as from carotenoids [192,193], betalains [194,195] and chlorophylls [196]. The
response of these natural pigments to pH changes depends on their molecular structure,
as well as on environmental conditions, such as temperature, oxygen levels, and light
exposure [197]. Anthocyanins are currently the most widely used natural pigments in
smart packaging applications because they exhibit characteristic color changes over a broad
range of pH values [16], changing from red (strongly acidic) to purple (mildly acidic) to
violet (neutral) to blue (mildly alkaline) to green (moderately alkaline) to yellow (strongly
alkaline) with an increase in pH (Figure 4). Under acidic conditions, the predominantly
red color is caused by the flavylium cation (oxonium form). As the pH is increased, a
number of different anthocyanin species with different absorption spectra are present in
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equilibrium with each other. In mildly acidic and neutral conditions, the carbinol pseudo-
base and quinoidal base (hemiketal form) dominate, respectively. Under mildly alkaline
conditions, the anionic quinoidal base species appears. Under strongly alkaline conditions,
anthocyanins are chemically unstable and degrade into a chalcone species that has a
green/yellow color [197,198]. Consequently, anthocyanins can be used as sensors over a
wide pH range because they have different characteristic colors under acidic, neutral, and
alkaline conditions. These anthocyanins can therefore be incorporated into biopolymer-
based smart packaging materials as pH sensors to monitor changes in the quality or
spoilage of foods. This kind of smart packaging material has been shown to be useful for
detecting quality changes in a number of food applications including, pork [162,164,199],
shrimp [184], chicken [166,169], milk [200,201], pork, shrimp, fish [202–204], and Atlantic
mackerel [205].

 

β

Figure 4. Solution color variations (A), and structural transformation of saffron petal anthocyanins in various buffer
solutions (B), Reprinted from [42], copyright 2021, with permission from Elsevier.

Other natural pigments are also available that undergo characteristic color changes
when the pH is altered and so can also be used as sensors of food quality [16]. For example,
carotenoids (lycopene/bixin/β-carotene) have been incorporated into polylactic acid films
to monitor and control the oxidation of sunflower oil [193]. The carotenoids act as natural
antioxidants that slow down oxidation but they also undergo color changes when they are
oxidized, thereby providing an indication of oil quality. Betacyanin derived from dragon
fruit peel has been incorporated into glucomannan/polyvinyl alcohol films as an indicator
of the freshness of packaged fish [172]. The pigments changed color from purple under
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acidic conditions to yellow under alkaline conditions, which provided an indication of
changes in fish quality. Chlorophyll has been incorporated into wheat gluten/polypyrrole
films as a color indicator of pH changes related to quality [196].

5.2. Gas Indicators

Fresh fruits and vegetables produce gasses (such as ethylene) as a result of natural
respiration processes, which provides a measure of their freshness and quality. Moreover,
gasses (such as oxygen) may move into or out of food packages and alter the susceptibility
of the foods to chemical degradation (such as oxidation). Finally, certain kinds of gasses
are generated due to the action of microbes that contaminate foods, thereby providing
an indication of their quality and safety. For this reason, it is important to have smart
biodegradable films that can sense and indicate the presence of specific gasses [113,206].

Smart packaging materials have been developed that contain sensors that are sensitive
to different kinds of gases (e.g., CO2, O2, H2S, and ethylene) and other volatile compounds
(e.g., amines, ketones, and aldehydes) that provide an indication of food quality [177,200,
204,207,208]. These gas sensors can be developed based on the tendency for some natural
pigments to chemically degrade when exposed to certain kinds of gasses. For instance,
anthocyanins degrade in the presence of ammonia (NH3) vapor, with the color changing
from purple/violet to green/yellow as the gas concentration increases [132]. Similarly,
betalains chemically degrade in the presence of oxygen, which leads to a measurable
color change [209]. Moreover, many carotenoids exhibit color fading when exposed to
oxygen due to oxidation reactions, and so they can be employed as oxygen sensors [210].
In principle, different natural pigments can be used to detect different kinds of gasses.
Colorimetric gas indicators can be incorporated into packaging materials in a variety of
ways, including adhesive labels, printed layers, or within the interior of the film [113]. These
smart packaging materials can provide information much more cheaply and quickly than
analytical instruments such as spectrophotometry, chromatography, mass spectrometry,
or nuclear magnetic resonance methods [206]. Numerous studies have demonstrated the
potential of smart packaging materials containing gas sensors to detect different kinds of
gasses including oxygen [211], carbon dioxide [207,208,212], hydrogen sulfide [200,213],
ethylene and volatile ammonia compounds [208,214]. As an example, a colorimetric gas-
sensing indicator has been used to monitor changes in CO2 levels, which provides an
indication of the freshness of green bell peppers [215]. The colorimetric films changed
from green to orange when the fresh-cut bell peppers deteriorated. In another study, a
smart colorimetric packaging material consisting of a starch/polyvinyl alcohol film loaded
with roselle (Hibiscus sabdariffa L.) anthocyanins was shown to be suitable for monitoring
changes in the freshness of silver carp (Hypophthalmichthys molitrix) stored at 4 ◦C [174]. The
colorimetric label changed from purple (acidic) → pink → violet → bluish → green/yellow
(basic) over time due to the formation of volatile basic nitrogen amines. In another study,
smart colorimetric packaging materials consisting of tara gum/polyvinyl alcohol films
containing curcumin were used to monitor changes in the freshness of shrimp by detecting
the generation of NH3 [177]. The color of the smart indicator film reversibly changed from
yellow to brown as the NH3 concentration increased.

5.3. Time-Temperature Indicators

In general, time-temperature indicators (TTIs) are used to monitor and track the quality
and safety of packaged foods during storage and distribution by determining whether
they have been exposed to elevated temperatures for extended periods [113]. Smart
packaging materials loaded with TTIs have been developed using natural food pigments
as indicators [216–219]. The extent of the color change of these indicators depends on
the temperature-time profile that the packaged food has been exposed to. These TTIs
can therefore be used to obtain an indirect indication of whether a food product is likely
to have deteriorated during storage [216,219,220]. TTIs have been widely used in the
food packaging industry because they are relatively simple and inexpensive to design,
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as well as being easy to read by consumers [113]. TTIs are categorized into different
groups depending on the underlying principles of the temperature-detection method:
diffusion, polymerization, microbial growth, enzymatic reaction, thermochromic reaction,
photochromic reaction, electronic, and surface plasmon resonance [221,222]. Sensors that
depend on temperature can also be classified into different categories depending on their
mode of operation: (i) critical temperature indicators (CTI), which report whether the food
has been heated above or cooled below some specified temperature during its lifetime; (ii)
critical temperature/time integrators (CTTI), which report whether the food has been heated
above or cooled below some specified temperature for longer than a specified time; and (iii)
temperature-time indicators (TTIs), which report the full temperature versus time profile of a
food product throughout its history [113]. It is therefore important to select a temperature
sensor that can provide the required response to a change in its thermal environment.
Typically, a temperature sensor has an activation energy (Ea) that must be overcome before
there is a change from one state to another, such as a color change [113]. Temperature
sensors typically follow an Arrhenius temperature dependency and it has been estimated
that their activation energy should be in the range of about 10 to 40 kcal/mol [223]. A well
designed temperature sensor can provide information about the expected shelf life of a
food product provided there is prior knowledge about the impact of storage conditions on
shelf life [113,222].

A number of researchers have examined the suitability of natural pigments as tem-
perature sensors. Various types of anthocyanins have been shown to exhibit discoloration
when the temperature exceeds about 30 ◦C, including those isolated from vegetable ex-
tracts [224], blue flowers [225], pomegranate juice [226], and fruits purees [227]. As an
example, smart packaging materials have been developed by integrating a temperature-
sensitive anthocyanin into a chitosan/cellulose matrix, which irreversibly changed color
from violet to yellow when the temperature was increased from 40 to 70 ◦C [228]. A number
of other time-temperature colorimetric indicators have been developed based on other
sensor mechanisms, including microbial-based (green to red), polymer-based (colorless
to blue), diffusion-based (yellow to pink), and enzymatic-based (green to yellow to red)
TTIs [206,229].

6. Applications of Biodegradable Packaging Material

Biodegradable packaging materials have been developed to increase the quality,
shelf life, and safety of many kinds of foods [230,231]. In the following section, several
applications of these packaging materials are presented for different food products. In
addition, Table 4 summarizes a number of previous studies on the application of smart and
active packaging materials in real foods.
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Table 4. Application of smart or active packaging materials fabricated by solution casting method to real food products tested at room or refrigerator temperature.

Food model Polymers Active materials Smart or Active Function Remarks Ref.

Shrimp
Bovine skin

gelatin
ZnO nanoparticles/clove

essential oil
Active Antibacterial

Composite films showed antibacterial
activity against Listeria monocytogenes

and Salmonella Typhimurium
inoculated in shrimp during

refrigerated storage.

[232]

Chicken breast meat Carboxymethyl cellulose
Okra mucilage/

ZnO
nanoparticles

Active Antimicrobial/Antioxidant

Incorporating okra mucilage and ZnO
nanoparticles in films reduced

microbial growth, oxidation, and
gas production.

[233]

Vacuum-packed beef
patties

Corn-zein-laminated
linear

LDPE film

Thymol, carvacrol, and eugenol
essential oil

Active Antioxidant

Incorporating essential oils in films
reduced lipid oxidation and color

changes in fresh ground beef patties
during storage.

[234]

Pork meat
Distiller dried grains
with soluble protein

Green tea, oolong tea, and black
tea extracts

Active Antioxidant
Incorporating tea extracts increased

the antioxidant activity of films.
[235]

Lamb meat
Whey protein

isolate/cellulose
nanofibre/

TiO2 nanoparticle/rosemary
essential oil

Active Antimicrobial/Antioxidant

Nanocomposite films reduced total
viable count, Pseudomonas spp,

Enterobacteriaceae, Lactic acid bacteria,
Staphylococcus aureus, Listeria

monocytogenes, and Escherichia coli
counts. Higher inhibition observed

for Gram-positive than
Gram-negative bacteria

[236]

Frozen blue shark
(Prionace glauca)

low density
polyethylene (LDPE)

Barley husk extracts Active Antioxidant
Hydrolytic activity and lipid

oxidation are sensitive to antioxidant
content and storage time.

[237]

Palm oil Cassava starch Mango and acerola pulp Active Antioxidant
Antioxidants were effective additives
for protecting the packaged product.

[238]

Strawberry Clay/PE polymer
Carvacrol and thymol

essential oils
Active Antifungal

Incorporating essential oils in films
increased antifungal activity

against Botrytis.
[128]
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Table 4. Cont.

Food model Polymers Active materials Smart or Active Function Remarks Ref.

Tomato Chitosan TiO2 nanoparticles Active Gas scavenger
Nanocomposite films delayed

tomato ripening.
[239]

Pear
Papaya (Carica papaya L.)

puree
Ascorbic acid and Moringa

leaf extract
Active Antioxidant

Films increased shelf-life and
improved sensory properties of pears.

[240]

Banana Chitosan
Sonneratia caseolaris (L.) Engl.

leaf extract
Active Antimicrobial

Incorporating a leaf extract into the
films increase the shelf-life of bananas

[241]

Gorgonzola cheese
Cellulose polymeric

films and
laminated films

Natamycin Active Antifungal
Incorporating the antifungal agent

into film led to increased inhibition of
P. roqueforti

[242]

Fish
Chitin

nanofiber/methylcellulose
Red barberry

anthocyanins (RBAs)
Active/ Smart

Antimicrobial/ Antioxidant/
Colorimetric

Films exhibited good antioxidant and
antimicrobial activity, as well as
ability to detect quality changes.

[28]

Chicken Chitosan/corn starch
Hibiscus rosa-sinensis

anthocyanin
Smart Colorimetric

Films exhibited good optical and
morphological properties and are

sensitive to pH changes.
[169]

Sausage Agar/Tapioca starch Red cabbage anthocyanin Smart Colorimetric
Anthocyanins change color in
response to quality changes in

sausage during storage.
[165]

Chicken Cassava starch Blueberry residue anthocyanin Smart Colorimetric
Anthocyanins change color in

response to pH (quality) changes in
chicken during storage.

[166]

Pork/Fish Chitosan
Bauhinia blakeana Dunn. flower

anthocyanin
Smart Colorimetric

Anthocyanins change color in
response to quality changes in pork

and fish during storage.
[204]

Lamb meat
Chitosan

nanofibers/methylcellulose
Saffron petal anthocyanins Active/Smart

Antimicrobial/Antioxidant/
Colorimetric

Chitosan provides antimicrobial
activity while anthocyanins provide
antioxidant activity and change color
in response to changes in lamb quality

during storage.

[42]
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Table 4. Cont.

Food model Polymers Active materials Smart or Active Function Remarks Ref.

Red meat
Methylcellulose/

chitosan nanofiber
Barberry anthocyanin Active/Smart Antioxidant/Colorimetric

Chitosan provides antimicrobial
activity while anthocyanins change
color in response to changes in meat

quality during storage.

[79]

Banana PVA/glucomannan Sappan Wood extracts Smart Antioxidant
The wood extract changed color in

response to quality changes in banana
during storage.

[243]

Milk
Starch/

Polyvinyl alcohol
Purple sweet potato

anthocyanin
Smart Antimicrobial/Colorimetric

The anthocyanins gave a color change
in response to alterations in milk
quality. The films also exhibited

antimicrobial activity against
Aspergillus niger, Bacillus subtilis, and

Staphylococcus aureus.

[244]
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6.1. Meat and Seafood

Biodegradable packaging materials have been used to extend the shelf life and improve
the quality of meat products. These packaging materials are often used to control the
environment around red meat so as to prevent undesirable color changes associated
with myoglobin [113]. Consequently, they should have the ability to control the flow
of gasses (such as oxygen) into and out of the package. In addition, active packaging
materials may contain antimicrobial or antioxidant components to slow down microbial
contamination or oxidation reactions, whereas smart packaging materials may contain
sensors to provide insights into the quality or safety of the product (Figure 5) [245]. As an
example, biodegradable packaging materials have been developed for meat applications
that consist of a starch/whey protein film that includes a red cabbage extract as a natural
antioxidant to inhibit lipid oxidation and improve meat quality [246]. Similarly, whey
protein films have been developed that contain antimicrobial essential oils (rosemary) and
titanium dioxide nanoparticles to improve the quality and shelf life of lamb meat during
refrigerated storage by inhibiting microbial growth [236]. These films were reported to
increase the shelf life of the meat products from around 6 to 13 days at 4 ◦C. In another study,
smart packaging materials were prepared that consisted of κ-carrageenan films containing
a botanical extract (Lycium ruthenicum Murr) as a color indicator, which changed color
depending on the degree of spoilage of packaged shrimp [247]. A temperature-sensitive
packaging material has been developed to give an indication of the quality status of fresh
beef during storage [248]. Fish and other seafood products are also highly perishable
foods as a result of microbial spoilage and oxidative reactions [249,250]. Active and smart
packaging materials have also been shown to be effective at protecting these products, as
well as at monitoring their quality during storage [28,79,112,236].

κ

 

Figure 5. Monitoring and tracking the freshness and spoilage of fish fillet using smart halochromic
film, Reprinted from [28], copyright 2021, with permission from Elsevier.
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6.2. Dairy Products

Dairy products are nutrient-rich foods that are highly susceptible to microbial and
chemical degradation during storage, thereby negatively impacting their quality attributes
and safety [251]. A number of researchers have shown that active packaging materials can
be used to increase the shelf life and quality of dairy products by including antimicrobial
or antioxidant substances [251]. For instance, packaging materials consisting of sodium
alginate films containing lemon extract were shown to inhibit the growth of spoilage
microorganisms in mozzarella cheese, thereby extending its shelf life [252]. Similarly
packaging materials consisting of starch films containing antimicrobial essential oils (car-
vacrol, linalool, and thymol) were shown to inhibit Saccharomyces cerevisiae growth on
Cheddar cheese [253]. Smart packaging materials have also been created that consisted
of starch/polyvinyl alcohol films containing anthocyanins and limonene, which changed
from purple to red when the pH of pasteurized milk changed during storage [244]. In
another study, smart packaging materials were developed that consisted of chitosan/PVA
films containing anthocyanins from red cabbage, which provided an indication of the
thermal history of milk products during storage based on color changes [118].

6.3. Fruits and Vegetables

Fresh and cut fruits and vegetables are highly perishable foods whose quality and
safety may deteriorate during storage because of insect infestation, microbial contami-
nation, or biochemical processes such as respiration [254,255]. Consequently, active and
smart packaging materials are being developed to protect these foods during storage and
transport, as well as to report on their quality status [256–258]. For instance, incorporating
titanium dioxide nanoparticles into chitosan films was shown to increase the shelf life
of tomatoes by delaying their ripening [239]. Incorporating anthocyanin-rich blackberry
extracts into carboxymethylcellulose (CMC) films was also reported to increase the shelf
life of cherry tomatoes [259]. Similarly, incorporating essential oils encapsulated in β-
cyclodextrins into packaging materials was shown to increase the shelf life and quality of
cherry tomatoes [260]. Antimicrobial packaging materials containing palmarosa essential
oils or star anise were shown to increase the shelf life and reduce the growth of Penicillium
expansum in apples [261].

7. Conclusions and Future Prospective

Smart and active packaging materials fabricated from natural materials have con-
siderable potential in the food industry to improve the quality and safety of foods, as
well as to extend their shelf-life and reduce waste. Natural pigments can be incorporated
into these materials as indicators of changes in freshness, quality, or safety by undergoing
color changes in response to specific alterations in pH, gas levels, or temperature. Natural
antimicrobials or antioxidants can be used to extend the shelf-life of packaged foods by
inhibiting microbial growth or undesirable chemical reactions. In some cases, a single
additive can have multiple functions, acting as an antimicrobial, antioxidant, and sensor.
The main advantage of smart packaging materials is that the freshness and safety of a
product can be monitored in real-time without having to open the package. Moreover,
insights into the previous history of the product can be ascertained, such as its exposure to
light, oxygen, pH, or temperature changes.

Despite their considerable potential, there are still a number of hurdles that must be
overcome before the more widespread commercial use of these active and smart packaging
materials in the food industry. In particular, most of the packaging materials developed so
far do not meet the rigorous optical, mechanical, barrier, or stability requirements needed
for commercial applications. Moreover, there is a need to develop packaging materials that
can be produced economically on a large scale. In addition, there is a need to ensure that
any packaging materials that are developed remain intact and perform under the wide
range of environmental conditions that foods experience during their production, storage,
and utilization, including changes in temperature, light exposure, relative humidity, and
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mechanical stresses. Clearly, further research is still required to create the next-generation
of biodegradable smart and active packaging materials that are robust and commercially
viable, which may involve the identification and use of new natural materials, as well as
the implementation of innovative structural design and processing approaches.
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