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Polyphenols constitute one of the most numer- 
ous and ubiquitous groups of plant metabolites 
and are an integral pat? of both human and animal 
diets. Ranging from simple phenolic molecules to 
highly polymerized compounds with molecular 
weights of greater than 30,000 Da, the occurrence 
of this complex group of substances in plant foods 
is extremely variable. Polyphenols traditionally have 
been considered antinutrients by animal nutruon- 
ists, because of the adverse effect of tannins, one 
type of polyphenol, on protein digestibility. How- 
ever, recent interest in food phenolics has in- 
creased greatly, owing to their antioxidant capac- 
ity (free radical scavenging and metal chelating 
activities) and their possible beneficial implications 
in human health, such as in the treatment and pre- 
vention of cancer, cardiovascular disease, and 
other pathologies. Much of the literature refers to 
a single group of plant phenolics, the flavonoids. 
This review offers an overview of the nutritional 
effects of the main groups of polyphenolic com- 
pounds, including their metabolism, effects on 
nutrient bioavailabilityl and antioxidant activityl as 
well as a brief description of the chemistry of 
polyphenols and their occurrence in plant foods. 

Introduction 

For decades, plant polyphenols have interested scientists 
because they are essential to plant physiology for their 
contribution to plant morphology (ie., pigmentation), they 
are involved in growth and reproduction and provide 
plants with resistance to pathogens and predators (by 
acting as phytoalexins or by increasing food astringency, 
thus making food unpalatable), they protect crops from 
plague and preharvest seed germination, and for other 
reasons. The polyphenolic profiles of plants differ be- 
tween varieties of the same species. Polyphenols, there- 
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fore, have been studied for taxonomic purposes or to de- 
termine adulteration of food products. Polyphenols have 
several industrial applications, such as in the production 
of paints, paper, and cosmetics, as tanning agents, and in 
the food industry as additives (as natural colorants and 
preservatives). In addition, some phenolic compounds, 
the flavonoids, have applications as antibiotics and an- 
tidiarrheal, antiulcer, and anti-inflammatory agents, as well 
as in the treatment of diseases such as hypertension, vas- 
cular fragility, allergies, hypercholesterolemia, and 0th- 

Polyphenolic compounds are ubiquitous in all plant 
organs and are, therefore, an integral part of the human 
diet. Until recgntly, most of the nutritional interest in 
polyphenolic compounds was in the deleterious effects 
caused by the ability of certain polyphenols to bind and 
precipitate macromolecules, such as dietary protein, car- 
bohydrate, and digestive enzymes, thereby reducing food 
digestibility. Recent interest, however, in food phenolics 
has increased greatly because of the antioxidant and free 
radical-scavenging abilities associated with some phe- 
nolics and their potential effects on human health. This 
review offers an overview of the main nutritional effects 
of polyphenolic compounds as well as a brief description 
of the chemistry of polyphenols and their occurrence in 
plant foods. 

In reviews of the abundant scientific literature on 
polyphenolic compounds, particularly those studies of 
the physiologic effects of plant polyphenols, most experi- 
ments are devoted to the study of a specific group of 
phenolic compounds-the flavonoids. This review pro- 
vides a general overview of the nutritional significance of 
flavonoids as well as other types of food polyphenols, 
including simple phenols and tannins. 

Chemistry of Phenolic Compounds 

Phenolic compounds or polyphenols constitute one of 
the most numerous and widely distributed groups of sub- 
stances in the plant kingdom, with more than 8000 phe- 
nolic structures currently Polyphenols are prod- 
ucts of the secondary metabolism of plants. They arise 
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biogenetically from two main synthetic pathways: the 
shikimate pathway and the acetate p a t h ~ a y . ~  This is an 
extremely wide and complex group of plant substances. 

Natural polyphenols can range from simple molecules, 
such as phenolic acids, to highly polymerized compounds, 
such as tannins. They occur primarily in conjugated form, 
with one or more sugar residues linked to hydroxyl groups, 
although direct linkages of the sugar unit to an aromatic 
carbon atom also exist. The associated sugars can be 
present as monosaccharides, disaccharides, or even as 
oligosaccharides. Glucose is the most common sugar resi- 
due, although galactose, rhamnose, xylose, and arabinose 
are also found, as well as glucuronic and galacturonic 

acids and many others. Associations with other com- 
pounds, such as carboxylic and organic acids, amines, 
and lipids, and linkages with other phenols are also com- 
mon. 

According to Harb~rne ,~  polyphenols can be divided 
into at least 10 different classes depending on their basic 
chemical structure. Table 1 illustrates the basic chemical 
structure of the main polyphenolic compounds. Fla- 
vonoids, which constitute the most important single group, 
can be further subdivided into 13 classes, with more than 
5000 compounds described by 1 9904 (Table 2). A brief de- 
scription of the main classes of food phenolics follows. 
For more comprehensive reviews, see references 4-1 0. 

Table 1. Main Classes of Polyphenolic Compounds 
Class Basic Skeleton Basic Structure 

Simple phenols '6 

Benzoquinones '6 ' 
Phenolic acids 

Acetophenones '6-'2 

Phenylacetic acids 

Hydroxycinnamic acids 

Phenylpropenes 

Coumarins, isocoumarins 

Chromones 

Naftoquinones 

Xanthones 

Stilbenes 

Anthraquinones 

'6-'4 

c,c,-c, 

Flavonoids c6-c3-c6 
Lignans, neolignans (',5-'& 

Lignins ('6-'3)" 
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Table 2. Classification of Food Flavonoids 
Flavonoid Basic Structure 

Chalcones 

Dihydrochalcones 

Aurones 

Flavones 

Flavonols 

Dihydroflavonol 

Flavanones 

Flavanol 

Flavandiol or 
leucoanthocyanidin 

Anthocyanidin 

Isoflavonoids 

Biflavonoids 

Proanthocyanidins or 
condensed tannins 

Q)p 
0 

Simple Phenols and Flavonoids 
Among the most common and important low-molecular- 
weight phenolic compounds are simple phenolic deriva- 
tives and flavonoids. Simple phenols (C,), such as phenol 
itself, cresol, thymol, resorcinol, orcinol, etc., are wide- 
spread among different plant species, including hydro- 
quinone and derivatives (e.g., arbutine, sesamol) and phlo- 
roglucinol. Phenolics with a C,-C, structure (Table l), such 

as phenolic acids (e.g., gallic, vanillic, syringic, p -  
hydroxybenzoic) and aldehydes (e.g., vanillin, 
syringaldehyde, p-hydroxybenzaldehyde), also are fairly 
common in higher plants and ferns. Phenylacetic acids 
and acetophenones (C,-C,) are, however, less frequently 
described in the literature. All of these compounds can be 
found free, although their corresponding methyl and ethyl 
esters and glycosides occur very commonly in free andor 
bound f ~ m s . ~  

Phenylpropanoid derivatives (C,-C,) also are an im- 
portant group of low-molecular-weight phenolics. 
Chromones are less known than coumarins, with the latter 
occurring naturally as glycosides (e.g., umbilliferone, aes- 
culetin, scopoletin). The most important phenylpropanoids 
are the hydroxycinnamic acids (p-coumaric, caffeic, feru- 
lic, sinapic) and derivatives. Cinnamyl alcohols (coniferyl 
alcohol or guaiacyl, sinapyl alcohol or syringyl, and p- 
coumaryl alcohol orp-hydroxyphenyl) form the basic con- 
stituent of lignins, and thus represent one of the major 
groups of plant phenolics. Phenylpropanoids and more 
simple phenols (benzoic acid and benzaldehyde deriva- 
tives) are usually covalently linked to cell wall polysac- 
charides (predominantly ester-linked to arabinose units 
of hemicellulose) or to the so-called core lignin.11*'2 

Flavonoids (Table 2) represent the most common and 
widely distributed group of plant phenolics. Their com- 
mon structure is that of diphenylpropanes ((2,-C,-C,) and 
consists of two aromatic rings linked through three car- 
bons that usually form an oxygenated heterocycle. Figure 
1 represents the basic structure and the system used for 
carbon numbering of the flavonoid nucleus. Biogeneti- 
cally, the A ring usually comes from a molecule of resorci- 
no1 or phloroglucinol synthesized in the acetate pathway, 
whereas ring B is derived from the shikimate pathway.I3 
Flavonoids occasionally occur in plants as aglycones, al- 
though they are most commonly found as glycoside de- 
rivatives. 

Among the flavonoids, flavones (e.g., apigenin, 
luteolin, diosmetin), flavonols (e.g., quercetin, myricetin, 
kaempferol), and their glycosides are the most common 

3' 

5 4 

Figure 1. Basic structure and numbering system of flavonoids. 
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compounds. They are widespread in the plant kingdom, 
with the exception of algae and fungi. Flavonols occur as 
0-glycosides, but flavone 0-glycosides and C-glycosides 
are very common,14 with the latter characterized for pos- 
sessing a carbon-carbon linkage between the anomeric 
carbon of a sugar molecule and the C-6 or C-8 carbon of 
the flavone nucleus. Unlike 0-glycosides, sugars in C- 
glycosides are not cleaved by acid hydrolysis. Flavanones 
(e.g., naringenin, hesperidin) also can occur as 0- or C- 
glycosides and are especially abundant in citrus foods 
and prunes. The variability of this group of flavonoids is 
noteworthy, with about 380 flavonol glycosides and 200 
different quercetin and kaempherol glycosides described 
to date? Isoflavones (e.g., genistein, daidzein), with ring 
B of the flavone molecule attached to the carbon 3 of the 
heterocycle, especially occur in legumes. 

Flavonoids (e.g., catechin, epicatechin, gallocatechin) 
are the monomeric constituents of the condensed tannins, 
although they are also very common as free monomers. 
Anthocyanins are the most important group of water- 
soluble plant pigments and are responsible for the color 
of flowers and fruits of higher plants. The term azthocya- 
nin refers to the glycosides of anthocyanidin (e.g., 
pelargonidin, malvidin, cyanidin). In addition to 
glycosylation, common linkages with aromatic and aliphatic 
acids, as well as methyl ester derivatives, also occur. An- 
thocyanins and polymeric pigments formed from antho- 
cyanins by condensation with other flavonoids are re- 
sponsible for the color of red wine.l* 

Simple phenols and flavonoids represent the vast 
majority of plant phenolics. Most of these compounds are 
of relatively low molecular weights and are soluble ac- 
cording to their polarity and chemical structure (degree of 
hydroxylation, glycosylation, acylation, etc.). Some of 
them, however, can be linked to cell wall components 
(polysaccharides, lignin). Because of the nature of the 
ester linkages, these compounds can be solubilized in al- 
kaline conditions or are otherwise retained in the fiber 
matrix. 

Tannins 
Unlike the previously described groups of plant pheno- 
lics, tannins are compounds of intermediate to high mo- 
lecular weight. Tannins with a molecular mass of up to 
30,000 Da have been found in carob pods (Leguminosae).I6 
Tannins are highly hydroxylated molecules and can form 
insoluble complexes with carbohydrates and protein. This 
function of plant tannins is responsible for the astrin- 
gency of tannin-rich foods, because of the precipitation 
of salivary proteins. The term “tannin” comes from the 
tanning capacity of these compounds in transforming ani- 
mal hides into leather by forming stable tannin-protein 
complexes with skin collagen. 

Plant tannins can be subdivided into two major 
groups: (1) hydrolyzable and (2) condensed tannins. A 

third group of tannins, the phlorotannins, are found only 
in marine brown algae and are not commonly consumed 
by humans.17 

Hydrolyzable tannins. Hydrolyzable tannins consist 
of gallic acid and its dimeric condensation product, 
hexahydroxydiphenic acid, esterified to a polyol, which is 
mainly glucose.18 These metabolites can oxidatively con- 
dense to other galloyl or hexahydroxydiphenic molecules 
and form high-molecular-weight polymers. As their name 
indicates, these tannins are easily hydrolyzed with acid, 
alkali, and hot water and by enzymatic action, which yield 
polyhydric alcohol and phenylcarboxylic acid. According 
to the nature of the latter, hydrolyzable tannins can be 
further subdivided into gallotannins, which are derived 
from gallic acid, or ellagitannins, which are derived from 
hexahydroxydiphenic acid and which take their name from 
the lactone ellagic acid. The best-known hydrolyzable tan- 
nin is tannic acid (Figure 2), which is a gallotannin con- 
sisting of a pentagalloyl glucose molecule that can further 
esterify with another five gallic acid units. 

Condensed tannins. Condensed tannins or proantho- 
cyanidins are high-molecular-weight polymers. The mo- 
nomeric unit is a flavan-3-01 (catechin, epicatechin, etc.), 
with a flavan-3,4-diol or leucoanthocyanidin molecule as 
its precursor. Oxidative condensation occurs between car- 
bon C-4 of the heterocycle and carbons C-6 or C-8 of adja- 
cent units. - 

Much of the literature on the condensed tannin con- 
tent of different plants refers only to oligomeric proantho- 
cyanidins (dimers, trimers, tetramers), because ofthe diffi- 
culty in analyzing highly polymerized molecules. 
Proanthocyanidins, however, can occur as polymers with 
degrees ofpolymerization of 50 and greater. The most com- 
monly described condensed tannins have molecular 
weights of approximately 5000 Da, although, as previously 
mentioned, polymers with molecular weights greater than 
30,000 Da have been discovered.16Autooxidative or enzy- 
matic polymerization of flavan-3-01 and flavan-3,4-diol 
units has been suggested as the process leading to the 
formation of condensed tannins.lV9 Interflavanoid linkages 

OH 

OH 

Figure 2. Structure of tannic acid. 
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are acid labile and yield anthocyanidins during acid hy- 
drolysis in alcoholic solutions. This reaction is used for 
determination of proanthocyanidin molecules. 
Phlobaphene-like substances also are formed when con- 
densed catechins are heated in mineral acid solutions from 
the further polymerization of these compounds.' 

Oligomeric proanthocyanidins and low-molecular- 
weight hydrolyzable tannins are soluble in different aque- 
ous and organic solvents, such as acetone, methanol, and 
water. However, high-molecular-weight condensed and 
hydrolyzable tannins are insoluble. In addition, when 
tannins form complexes with protein or cell wall polysac- 
charides, they remain insoluble. This insolubility oftannins 
is responsible for significant errors in the quantification 
of the polyphenolic content of plants, because polyphe- 
nols usually are analyzed in extracts, often omitting the 
quantification of insoluble or nonextractable tannins. 

Polyphenols in Foods 

Polyphenols are almost ubiquitous in plant foods (veg- 
etables, cereals, legumes, fruits, nuts, etc.) and beveqges 
(wine, cider, beer, tea, cocoa, etc.). Their levels vary greatly 
even between cultivars of the same species. For example, 
the formation of flavone and flavonol glycosides greatly 
depends on light; therefore, the highest concentrations 
of these compounds are found generally in leaves and 
outer parts of plants, with only trace amounts in the sub- 
terranean parts of ~1ants . l~ The presence of polyphenols 
in plant foods is largely influenced by genetic factors and 
environmental conditions. Other factors, such as germi- 
nation, degree of ripeness, variety, processing, zpd stor- 
age, also influence the content of plant p h e n o l i ~ s . ' ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~  

Polyphenols are partially responsible for the sensory 
and nutritional qualities of plant foods. The astringency 
and bitterness of foods and beverages depends on the 
content of polyphenolic compounds. Oxidation of polyphe- 
nols during processing or storage will result in either ben- 
eficial or undesirable characteristics in food products. For 
example, oxidative changes such as the browning of co- 
coa during processing or the oxidative polymerization of 
tea polyphenols during the manufacture of black tea re- 
sult in the development of distinctive and desirable orga- 
noleptic properties. Conversely, the enzymatic browning 
reaction of phenolic compounds (catalyzed by polyphe- 
no1 oxidase) and nonenzymatic browning reactions are 
responsible for the formation of undesirable color and fla- 
vor in h i t s  and vegetables.20J' 

There is a large body of literature on the polyphe- 
nolic composition and content of plant foods and bever- 
ages. Because of the complexity of this wide group of 
plant metabolites, however, many polyphenols remain 
unidentified. Moreover, it is difficult to compare data within 
the literature, owing to the lack of agreement on an appro- 
priate method to analyze the different types or families of 

polyphenolic compounds. As a result, information in the 
literature on the content and composition of polyphenols 
in plant foods is not only incomplete but sometimes also 
contradictory and difficult to compare. 

Table 3'2' lists the polyphenolic content of different 
foods and beverages. Most of the polyphenols listed are 
phenolic acids and flavonoids (including anthocyanins, 
procyanidins, flavanones, flavanols, etc.); fewer are 
tannins. Nonetheless, as mentioned previously, tannins 
are often underestimated when polyphenols are analyzed 
only in food extracts. 

As illustrated in Table 3, the polyphenolic content of 
plant foods can vary by several orders of magnitude. In 
legumes and cereals, the main polyphenols are flavonoids, 
phenolic acids, and tannins. Polyphenolic content in ce- 
reals is usually less than 1 % of dry matter, except for some 
sorghum (Sorghum bicolor) cultivars, which can have as 
much as 10%. Legumes with higher polyphenolic content 
are the dark varieties, such as red kidney beans, black 
beans (Phaseolus vulgaris), and black gram (Vigna 
mango). Legumes also contain isoflavones, whereas veg- 
etables are composed primarily of flavonoid glycosides. 
These are present mainly in the outer parts of the plant;14 
roots and tubers have very low concentrations of fla- 
vonoids, with the exception of certain plants, such as on- 
ions and Berries are characterized by their high 
anthocyanin content, whereas fruits such as apples and 
citrus fruits are rich in phenolic acids and flavonoids, re- 
spectively. The predominant phenolic compound in fruits 
is flavonol, and the highest concentrations occur in the 
skin.L,2',22 Nuts are rich in tannins; the polyphenols in oil 
seeds are mainly phenolic acids, and olive oil contains 
both phenolic acids and hydrolyzable tanni11s.2~ 

The polyphenolic content of fruit juices is usually 
in the range of 2-500 mg/mL, although juices from cer- 
tain orange varieties have much higher values (up to 
7000 mg/mL) owing to their extremely high flavanone 
(hesperidin) ~ o n t e n t s . * ~ , ~ ~  Fermentation of tea leads to 
important differences in the polyphenolic composition 
of tea leaves: green tea is very rich in flavanols, whereas 
black tea contains large amounts of oxidized polyphe- 
nols (theaflavins and thearubigin~).2~,~~ Chlorogenic acid 
is the main phenolic constituent of coffee beans. The 
major polyphenol in cocoa beans is the flavanol 
epicatechin, and cocoa beans are also rich in anthocya- 
nins and tannins. The polyphenols in wine include phe- 
nolic acids, anthocyanins, tannins, and other fla- 
vonoids. There are significant variations between the 
polyphenolic content of white and red wines (200-300 
versus 1000-4000 mg/mL, respectively) and between 
young and aged wines, with important differences in 
the nature of the polyphenols present in aged wines 
compared with those found in free-run grape juices and 
young ~ i n e s . ' ~ ~ ~ ~  
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Table 3. Polyphenolic Content of Different Plant Foods and Beverages1vz1 
Food/Beverage" Total Polmhenols 
Cereals (mg/lOO g dm) 

Barley 
Corn 
Millet 
Oats 
Rice 
Sorghum 
Wheat 

Legumes (mg/lOO g dm) 
Black gram 
Chickpeas 
Cowpeas 
Common beans 
Green gram 
Pigeon peas 

Nuts (% dm) 
Betel nuts 
Cashew nuts 
Peanuts 
Pecan nuts 

Vegetables (mg/100 g fin) 
Brussels sprouts 
Cabbage 
Leek 
Onion 
Parsley 
Celery 

Fruits (mg/lOO g fm) 
Apple 
Apricot 

1200-1 500 
30.9 

590-1060 
8.7 
8.6 

170-1 0,260 
22-40 

540-1200 
78-230 
175-590 
34-280 
440-800 
380-1710 

26-33 
33.7 
0.04 
8-14 

6-1 5 
25 

20-40 
100-2025 
55-1 80 
94 

27-298 
30-43 

Odm=dry matter; fm=fresh matter. 
bValues for different orange varieties. 

Dietary Intake of Polyphenols 

Currently, there is no accurate information available on 
dietary intake of polyphenols; only a few estimations are 
available in the literature. Kiihnau' estimated the average 
daily intake of dietary flavonoids in the United States to 
be between 1 and 1.1 g/day, depending on the season. 
Hertog et al?7 calculated the intake of two types of fla- 
vonoids-flavonols and flavones-in the Dutch diet, and 
found it to be 23 mg/day. This figure is significantly smaller 
than Kiihnau's estimation of 115 mg/day for these two 
flavonoids, which is allegedly overestimated because of 
the unreliability of the analytic methods employed during 
the 1970s.2* More recently, Leth and JustesenZ9 estimated 
the intake of flavones, flavonols, and flavanones in Den- 
mark to be 28 mg/day, similar to that reported by Hertog et 
al. These studies, however, only contemplate the intake of 
some types of flavonoids and do not consider other phe- 
nolic compounds. Moreover, it should be noted that the 
actual content of polyphenols in foods is usually under- 
estimated because of omission of the analysis of insoluble 
polyphenols, which may be quantitatively more important 

Food/Beverage" Total Polyphenoh 
Fruits (mg/100 gfin) 

Blackcmant 
Blueberry 

Cowberry 
Cranberry 
Gooseberry 
Grape 
Grapesuit 
Orange 
Peach 
Pear 
Plum 
Raspberry 
Red currant 
Strawberry 
Tomato 

Cheny 

Fruit juices ( m a )  
Apple juice 
Orange juiceb 

Tea leaves (% dm) 

Tea, cup (mg/200 mL) 
Coffee beans (% dm) 
Coffee, cup (mg/150 mL) 
Cacao beans(% dm) 

Beverages 

Green 
Black 

w i e  ( m a )  
White 
Red 

Beer (mg/L) 

140-1200 
135-280 
60-90 

128 
77-247 
22-75 
50490 
50 

50-100 
10-150 

4-225 
37-429 

38-218 
85-130 

2-25 

17-20 

2-16 
370-7100 
660-1000 

20-35 
22-33 

150-210 
0.2-10 

200-550 
12-18 

200-300 
1 OO(r-4000 (6500) 

60-100 

than flavonoids. Thus, accurate estimation of total poly- 
phenolic intake is not available. 

Bioavailability of Polyphenolic Compounds 

It is important for a nutritionist to know not only a person's 
daily intake of dietary polyphenols but also the 
bioavailability of those ingested polyphenols, since their 
nutritional significance and potential systemic effects will 
greatly depend on their behavior in the digestive tract. 
This is not a straightforward matter, however, and little is 
known about the absorption of polyphenols in the gas- 
trointestinal tract, whether they are retained in the body 
after absorption, and what their biologic significance might 
be. 

The absorption and metabolism of food phenolics are 
determined primarily by their chemical structure, which 
depends on factors such as the degree of glycosylationl 
acylation, their basic structure (i.e., benzene or flavone 
derivatives), conjugation with other phenolics, molecular 
size, degree of polymerization, and solubility. The enor- 
mous variability of this group of substances, as well as 
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their occurrence in plant materials as a complex mixture of 
phenolic compounds, creates great difficulties in the study 
of their bioavailability and their physiologic and nutri- 
tional effects. 

Efforts in this respect, however, have been made. Ex- 
periments reported in the literature have used extracts of 
different plant materials that contain a mixture of soluble 
phenolic compounds or pure standards used as supple- 
ments in complex foods administered either to laboratory 
animals or to human volunteers. When plant extracts are 
used, it is possible to gain information on the effect of 
their constituent polyphenols as a group, but not on the 
digestive fate and specific effects of individual polyphe- 
nols. Conversely, differences in the absorption, metabo- 
lism, and physiologic effects of food phenolics adminis- 
tered as supplements, compared with polyphenols that 
are part of a complex food matrix, cannot be ruled out. 
Finally, the extrapolation of animal data to humans is not 
clear. Attention also should be given to the fact that in 
most cases, and mainly because of the difficulty in their 
analysis and characterization, the study of the dig%stive 
fate and physiologic effects of insoluble polyphenols- 
highly polymerized or bound tannins-is usually ne- 
glected. All of these limitations represent difficulties to 
overcome in studying the bioavailability of polyphenolic 
compounds and their nutritional significance; caution in 
interpreting results is necessary. 

Both in vivo and in vitro studies using polyphenolic 
compounds with different chemical structures and solu- 

bility illustrate their varying susceptibility to digestion, 
fermentation, and absorption within the gastrointestinal 
tract.3u* These findings prompted the authors to suggest 
a classification of polyphenolic compounds for nutritional 
purposes. Such classification distinguishes between ex- 
tractable and nonextractable polyphenols. Extractable 
polyphenols are low- and intermediate-molecular-mass 
phenolics that can be extracted using different solvents 
(water, methanol, aqueous acetone, etc.) and include some 
hydrolyzable tannins and proanthocyanidins. Nonex- 
tractable polyphenols are high-molecular-weight com- 
pounds or phenols bound to dietary fiber or protein that 
remain insoluble in the usual  solvent^.“^.^^ 

When different samples containing both extractable 
polyphenols and condensed tannins (nonextractable 
polyphenols) were treated in vitro with digestive enzymes 
(a-amylase, amyloglucosidase, and protease) and dialyzed 
to simulate intestinal digestion and absorption, the pres- 
ence of both nonextractable and extractable polyphenols 
was observed in the insoluble and soluble fiactions ob- 
tained (Table 43b335). These results suggest the nonavail- 
ability of some polyphenolic compounds, mainly nonex- 
tractable polyphenols. 

These results were confirmed by in vivo studies of 
rats fed fruit products (apple pulp and grape pomace) that 
contained boQ nonextractable and extractable polyphe- 
nols36,37 or products with only nonextractable polyphe- 
nols (carob pod concentrate, which is rich in highly poly- 
merized condensed tannins) and extractable polyphenols 

Table 4. Presence of Extractable (EPP) and Nonextractable Polyphenols (NEPP) in Different Plant Materials 
and in Soluble and Insoluble Fractions Obtained After Enzymatic Treatments (“h dry matter) 

Insoluble Fraction Soluble Fraction Sample 
% Drv Matter Yo Drv Matter Yo Original Sample % Drv Matter % Original Sample 

Carob 
NEPP 
EPP 

17.9 17.1 95.5 
13 NIY - 

- ND 
0.72 55.48 

Carob pod concentrate2l 
- NEPP 27.6 12.7 46.0 ND 

EPP 1.36 ND - 0.59 43.4 

Spanish s a i n f ~ i n ~ ~  
- NEPP 7.0 5.6 80.0 ND 

EPP 1.1 ND - 0.30 27.3 

Apple pulp33 
NEPP 
EPP 

1.6 1 .oo 62.5 ND - 
0.34 ND - 0.2 1 61.7 

White grape p o m a ~ e ~ ~ , ~ ~  
- ND - NEPP 14.5 ND 

EPP 4.02 1.70 42.3 1.14 28.4 

Red grape p0mace~~3~  
NEPP 36.4 ND - ND - 
EPP 329 1.44 43.8 0.68 20.7 

WD=not determined. 
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(catechin and tannic Nonextractable polyphe- 
nols were extensively recovered in feces, confirming the 
resistance of these compounds to intestinal digestion and/ 
or absorption (Table Conversely, extractable 
polyphenols were excreted only in minor amounts, sug- 
gesting that extensive digestion andor absorption of these 
polyphenolic compounds occurs in the gut. Similar re- 
sults were obtained by Degen et al.,"3 who found that 
extractable polyphenols from Acacia saligna were virtu- 
ally absent in sheep and goat feces, whereas condensed 
tannins were excreted in substantial amounts. 

Differences in the percentage of excretion between 
extractable and nonextractable polyphenols may result 
because of chemical differences (i.e., molecular size, de- 
gree of polymerization of soluble and insoluble polyphe- 
nols, nature of the phenolic bound to other food compo- 
nents in nonextractable polyphenols, etc.). Distinct ab- 
sorption of various extractable polyphenols, depending 
on their extractability with different solvents, was reported 
by Jimenez-Ramsey et al." These authors used 14C-labeled 
phenolics from sorghum grains (Sorghum bicoloy) ex- 
tracted in water, ethanol, or aqueous acetone. When the 
polymeric 14C-proanthocyanidin fraction (insoluble in 
water and ethanol, but soluble in aqueous acetone) was 
fed to chickens, no radioactivity was detected in plasma 
or tissues, with all the radioactivity recovered in the excre- 
ment and in the gastrointestinal tract and its contents. 
These results illustrate the nonabsorbable nature of some 
soluble tannins with a low degree of polymerization (con- 
densed tannins or proanthocyanidins). Conversely, the 
14C-nontannin phenolic fractions (monomeric and oligo- 
meric polyphenols soluble in water and ethanol) were par- 
tially absorbed from the intestinal tract and the label was 
extensively detected in all tissues and plasma. 

Nonextractable polyphenols that are different from 
highly polymerized tannins (i.e., polyphenols bound to 
protein or dietary fiber) can be liberated under certain cir- 
cumstances and thus made available for digestion. In an 
interesting in vivo study using insoluble I4C-labeled phe- 
nolic groups bound to cell wall polysaccharides from spin- 
ach (Spinacia oleracea), Buchanan et a1.4s showed that 
ferulic and p-coumaric acids were released from the cell 
wall. Some phenolic acids were released in the upper in- 
testine, partially because of the alkali-labile nature of their 
ester bindings with cell wall polysaccharides and partially 
because of the action of fermentative bacteria in the small 
intestine (especially in the terminal ileum). These free phe- 
nolics were promptly absorbed by the intestinal mucosa, 
with significant amounts of 14C-label present in the body 
tissues or excreted in urine. However, most 14C-labeled 
phenolic groups reached the large intestine, where radio- 
activity was solubilized from cell wall and free phenolic 
groups (coumaric and ferulic) were released upon bacte- 
rial fermentation of cell wall polysaccharides. Radioactiv- 
ity could be detected in body tissues and urine, suggest- 

Table 5. Fecal Excretion of Extractable (EPP) and 
Nonextractable Polyphenols (NEPP) in Rats Fed 
Different Polyphenot-containing Diets 

Intake Excretion 
(phveek) dweek YO of intake 

Apple pulp36 
NEPP 0.5 1 035 68.6 
EPP 0.014 0.002 14.3 

Grape pomace37 
NFPP 5.3 1 521 98.1 
EPP 0.19 0.06 31.6 

Carob pod ~oncentrate~~ 

Tannic a ~ i d ~ ~ , ~ ~  

NEPP 6.1 1 5.97 97.7 

EPP 2.06 0.10 4.6 

C a t e ~ h i n ~ ~  
EET 2.11 0.07 3.1 

ing absorption and metabolism of these polyphenols. A 
fraction of 14C, made up of phenols resistant to microbial 
degradation and not absorbed in the intestine, was ex- 
creted in feces. 

Metabolism of Phenolic Compounds 

It seems evident that some polyphenolic compounds, ei- 
ther extractable polyphenols or solubilized phenolics, are 
metabolized within the gastrointestinal tract. Aglycones 
and free simple phenolic compounds, flavonoids (querce- 
tin, genistein) and phenolic acids, can be directly absorbed 
through the small intestinal m ~ c o s a . ~ ~ ~  Free phenolics 
(cinnamic acid and derivatives such asp-coumaric, feru- 
lic, caffeic, etc.) have been shown to be absorbed through 
the intestinal tract in both in vivo experiments of rats48 
and in vitro experiments of isolated rat je jun~m.4~ Con- 
versely, glycosides must be hydrolyzed to their corre- 
sponding aglycones before absorption. Because mammals 
lack the appropriate P-glycosidases, it was thought that 
absorption in the small intestine did not occur.sss2 It has 
been shown, however, that partial absorption of quercetin 
glycosides takes place in the upper intestine, probably 
owing to the action of glycosidases from bacteria that 
colonize the terminal Most glycosides, how- 
ever, pass into the large intestine, where they are hydro- 
lyzed by the cecal microflora, rendering free aglycones. 
The mediation of bacterial enzymes in the bioavailability 
of phenolic glycosides was clearly proved by Griffiths 
and who showed that flavonoid glycosides were 
excreted as such in the feces of germ-free rats. Bacterial 
fermentation of carbohydrates would also liberate pheno- 
lics bound to dietary fiber, which would be metabolized 
like the extractable polyphenols. 

In the colon, aglycones are absorbed through the gut 
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epithelium and methylated and/or conjugated with glucu- 
ronic acid or sulfate in the liver. The main organ involved 
in the metabolism of polyphenols is the liver, although the 
implication of other organs such as the kidneys or the 
intestinal mucosa cannot be ruled out, since they contain 
the enzymes involved in polyphenol metabol i~m.~~ 

Conjugated and 3 '-0-methylated derivatives have 
been detected in the plasma of rats administered flavanols 
( c a t e ~ h i n ~ ~ ? ~ ~ ) ,  flavonols (quercetin, rutin, and isorham- 
netin46, 55,56), and isoflavones (geni~tein~'). These metabo- 
lites are secreted in the urine or in the bile. In this case, 
they can enter an enterohepatic cycle when deconjugated 
by the action of the colonic microflora and reabsorbed. 
Alternatively, they can be fully metabolized and converted 
into simple phenolic acids after hydrolysis of their fla- 
vone structure (opening of the heterocycle) mediated by 
bacterial enzymes. The hydroxylation pattern will deter- 
mine the susceptibility of polyphenols to bacterial degra- 
dation, with the absence of hydroxyl groups preventing 
ring cleavage.28,s' The phenolic acids formed as fission 
products, such as free soluble phenolics, are absrorbed 
through the intestinal mucosa and excreted in the 

Although evidence of the absorption and metabo- 
lism of polyphenols in the gut exists, less is known about 
the efficiency of such uptake and the permanence of phe- 
nolic compounds or their conjugates and derivatives in 
the body. Animal studies with I4C-labeled phenolics indi- 
cate that only partial absorption takes place. Thus, only 
20% of the 14C-quercetin administered to rats was ab- 
sorbed, 30% was excreted, and the remaining 50% was 
metabolized, yielding phenolic acids and C02.s9 Similarly, 
King et al.47 reported an absorption of about 20% of the 
soy isoflavones administered to rats, with a fecal excre- 
tion of approximately 2 1 % of the ingested dose. No differ- 
ences between the aglycone and the glycoside were ob- 
served in this experiment. Conversely, Buchanan et al.45 
showed that 19% of the gavaged 14C-phenolics (p-coumaric 
and ferulic acids) bound to cell wall polysaccharides were 
excreted in rat feces. About 20% ofthe dose was excreted 
in urine and more than 34% of the label was incorporated 
into body tissues 18 hours after gavage; long-term perma- 
nence of phenolic compounds was not studied. 

Human experiments, although restricted to the study 
of flavonoids, also show only partial absorption of 
polyphenols. Absorption of orally administered quercetin 
in healthy ileostomized individuals varied between 24% 
and 52% of the ingested aglycone and glycoside, respec- 
t i ~ e l y . ~ ~  Soybean isoflavones administered to humans were 
absorbed by healthy volunteers in a range varying from 
9% to 21%, depending on the isoflavone.60 Blood concen- 
trations of total catechins of 0.17 pmol/L after ingestion of 
black tea and up to 0.55 pmol/L after green tea were re- 
ported recently;6' these data agree with those reported by 
Lee et a1.,62 who estimated that the absorption of tea cat- 

.28,50-52,58 

echins corresponded to about 0.2-0.9% of the ingested 
dose. 

Only short-term data are available on the permanence 
of absorbed phenolics in the body. This point is of great 
importance, because some of the physiologic effects of 
food polyphenols depend on their circulating levels (i.e., 
antioxidant capacity). Manach et a1.46 observed that con- 
centrations of quercetin metabolites in the plasma of rats 
adapted or not adapted to a flavonoid-rich diet did not 
drastically vary 16 hours after reaching maximum. These 
authors suggested that the rate of elimination of querce- 
tin metabolites was relatively low and that high plasma 
concentrations can be easily maintained with a regular 
supply of flavonoids in the diet. 

Van het Hof et a1.6' studied the kinetics of absorption 
and elimination of tea catechins. These investigators found 
that maximum blood levels occurred 2 hours after tea in- 
gestion and that elimination half-life varied between 4.8 
and 6.9 hours for green and black tea catechins, respec- 
tively. These values differed from those reported by 
Hollman et al.,63 who found that maximum plasma querce- 
tin concentrations after the ingestion of onions, which are 
rich in quercetin, occurred after 3.3 hours and that the 
elimination half-life was 16.8 hours. Therefore, there seem 
to be important differences in the rate and extent of ab- 
sorption and elimination of dietary polyphenols, depend- 
ing on their ch>mical structure. 

Fermentation of Polyphenolic Compounds 

As mentioned previously, fermentative microflora play 
a crucial role in the metabolism of some polyphenolic 
compounds. However, not all phenolics are equally sus- 
ceptible to bacterial degradation, because certain com- 
pounds, such as insoluble condensed tannins, are ex- 
creted in feces apparently without being affected by 
the colonic bacteria. In addition to their susceptibility 
to microbial degradation, dietary polyphenols also can 
influence intestinal microflora and their fermentative 
capacity toward other food components. 

In vitro fermentation of highly polymerized con- 
densed tannins from carob pod using rat cecal con- 
tents as the inoculum showed that these condensed 
tannins were not affected by fermentative mi~ro f lo ra .~ '*~~  
Also, the levels of short-chain fatty acids (SCFA), such 
as acetic, propionic, and butyric acid, which are the 
primary end products of colonic fermentation, were not 
affected by the presence of carob pod condensed 
tannins in the incubation system. This suggests that 
highly polymerized phenols do not affect intestinal mi- 
croflora. Similarly, cecal contents of rats fed diets con- 
taining condensed tannins from grape pomace did not 
affect normal in vitro fermentation of apple pectin used 
as i n o ~ u l u r n . ~ ~  This suggests that condensed tannins 
do not affect the colonic microflora or their fermenta- 
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tive capacity. 
Conversely, the analysis of cecal contents of rats 

fed water-soluble condensed tannins from quebracho 
(Schinopsis quebracho-colorado), composed of mono- 
mers, dimers, trimers, and oligomers, showed depoly- 
merization of polymers, degradation of monomers, and 
accumulation of simple phenolic compounds;66 this in- 
dicates bacterial degradation of soluble condensed 
tannins of a low degree of polymerization. Contrary to 
highly polymerized compounds, quebracho soluble 
tannins depressed the production of SCFAs, showing 
a bacteriostatic effect. 

In vitro fermentation of the flavonoid quercetin for 
72 hours yielded a reduced production of propionate 
and butyrate but a high production of acetic acid; this 
suggests that quercetin is fermented by bacterial mi- 
croflora with the opening of the aromatic ring, which 
would explain the high production of acetic acid origi- 
nating from the complete hydrolysis of the flavonoid 
and the absence of other SCFAs typically produced 
during carbohydrate f e rmen ta t i~n .~~  e 

Similarly, in vitro fermentation of the flavonoid cat- 
echin and of tannic acid (with gallic acid as the con- 
stituent monomeric phenol) also was characterized by a 
high relative production of acetic acid after 72 hours of 
fermentation, but not after 24 hours, suggesting that 
the proposed hydrolysis of the aromatic ring needs long 
fermentation  time^.^^*^' Tannic acid caused a reduced 
production of total SCFAs, indicating an inhibitory ef- 
fect of this type of phenolic structure on the fermenta- 
tive microflora. This effect also was observed by Arri- 
goni et al.," who reported that soluble polyphenols (both 
flavonoid and gallic acid structures), but not nonex- 
tractable polyphenols (condensed tannins), slow down 
the fermentability of polysaccharides. 

On the other hand, in vitro fermentation assays 
using rumen microbes showed different degradation of 
quebracho tannins: soluble and extractable proantho- 
cyanidins were partly fermented, whereas nonextract- 
able condensed tannins bound to protein were not de- 
graded.68,69 Both quebracho and tannic acid decreased 
the production of SCFAS.~~ Similarly, certain phenolic 
acids (ferulic,p-coumaric, and cinnamic acids) have been 
reported to inhibit the growth of rumen microorgan- 
i s m ~ ~ ~  and their fermentative effect on carbohydrates 
and p r ~ t e i n , ~ ' . ~ ~  although they are metabolized by the 
rumen m i ~ r o f l o r a . ~ ~ , ~ ~  

In summary, the degradation and absorption of 
polyphenols within the gastrointestinal tract depend 
on the nature not only of the phenolic compound but 
also of the intestinal microflora, which fermentative ef- 
fect on other dietary components will be affected, con- 
versely, by the type of polyphenolic compound. 

Nutritional and Physiologic Effects of 
Polyphenols 

Influence of Polyphenols on the Digestibility of 
Macronutrients 
Probably one of the best-known properties of polyphe- 
nolic compounds is their capacity to bind and precipitate 
protein. Although this protein-binding capacity is com- 
mon to most polyphenols, thanks to their high degree of 
hydroxylation, low-molecular-weight phenols are unable 
to precipitate protein, and it has been shown that oligo- 
mers must contain at least three flavonol subunits to ef- 
fectively precipitate protein.75 Highly polymerized tannins 
are the most effective precipitators of protein. Tannin- 
protein complexes are usually established through hydro- 
gen bonds and hydrophobic interactions, without the con- 
tribution of covalent or ionic  bond^.^',^^ 

With regard to nutrition, tannins traditionally have 
been considered antinutrients because the presence of 
tannins in plant foods is usually accompanied by a re- 
duced digestibility of protein and a subsequent increase 
in fecal nitrogen Similarly, in vitro protein 
digestibility also is reduced in the presence of condensed 
tannins.30*35*82,83 However, the ability of polymeric 
proanthocyanidins (condensed tannins) to form insoluble 
protein-polyphenol complexes is limited to those molecules 
physically accessible to soluble proteins. Highly poly- 
merized tannins (nonextractable polyphenols) are insoluble 
compounds that usually form part of a complex matrix with 
cell wall polysa~charides,~~ or insoluble tannin granules,I6 
which greatly reduces their protein-binding ability. These 
effects are more pronounced with soluble oligomeric 
proanthocyanidins or hydrolyzable tannins,*' since the 
simple phenols have no ability to precipitate pr0tein.7~ 

The increased fecal nitrogen excretion after ingestion 
of tannin-containing diets is likely caused by an enhanced 
elimination of endogenous protein rather than by a re- 
duced digestibility of dietary protein. This was confirmed 
by Shahkhalili et a1.86 and Mole et a1.87 in experiments of 
rats fed I4C- and I'N-labeled proteins, respectively. Con- 
versely, fecal protein excreted after tannin ingestion is 
very rich in proline.88 Salivary proline-rich proteins have a 
very high affinity for tannins. Secretion of these tannin- 
binding proteins, which is thought to be a mechanism of 
adaptation by herbivores consuming high-tannin dietsYs9 
is induced by the presence of tannins in the diet.g0 

Furthermore, tannins can bind other endogenous pro- 
teins in the intestinal tract, such as digestive enzymes, 
and inhibit them.85~91-95 This causes a reduction in the di- 
gestibility not only of proteing3 but of other macronutri- 
ents, such as starch and lipids.%% Inhibition of amylolytic 
enzymes and the subsequent reduction of dietary carbo- 
hydrate hydrolysis can decrease the postprandial glyce- 
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mic response.97 Likewise, polyphenols also can form com- 
plexes with polysaccharides other than those that form 
the plant cell wall (i.e., s t a r ~ h ) ~ ~ , ~ ~  and affect the glycemic 
and insulinemic responses as well. 

The effect of food polyphenols on lipid metabolism 
has not been extensively studied. Both soluble polyphe- 
nols and condensed tannins have been shown to increase 
fecal fat e x ~ r e t i o n . ~ ~ ~ ~ J ~ ~ O ~  In addition, hypocholesterol- 
emic effects have been reported in animals fed diets con- 
taining grape tannic acid,IM and tea cat- 
echins,lo5 with increased plasma levels of high-density 
lipoprotein (HDL) cholesterol and reduced concentrations 
of low-density lipoprotein (LDL) cholesterol. This 
hypocholesterolemic action of dietary polyphenols is 
mediated by an enhanced reverse-cholesterol transport 
and by reduced intestinal cholesterol absorption and in- 
creased bile acid excretion.'01J02 The exact mechanism of 
action, however, is not known. 

Influence of Polyphenols on Bioavailability of 
Minerals 
Polyphenols can form complexes with meTa1 cations 
through their carboxylic and hydroxylic groups, and thus 
interfere with the intestinal absorption of minerals. Nu- 
merous experiments in both humans and animals have 
shown that polyphenols strongly inhibit iron absorp- 
tion.Iob"' This action has been attributed to the galloyl 
and catechol groups of polyphenolic compounds.Io6 Mo- 
nomeric flavonoids in green and herb teas (catechins),lo" 
108~110 phenolic acids in coffee (chlorogenic acid),IM poly- 
merized products in black tea and cocoa,III and wine 
p o l y p h e n o l ~ ~ ~ ~  have been shown to reduce iron 
bioavailability. Conversely, tannins from soybean protein, 
chickpeas, and red kidney beans had no significant effect 
on iron absorption,"2 suggesting a lack of effect of con- 
densed tannins (nonextractable polyphenols). This find- 
ing was not, however, confirmed by Jansman et al.,Il3 who 
reported a reduced absorption of iron and copper in pigs 
fed condensed tannins from fava beans. 

Reduced copper absorption after consumption of tea 
also has been observed in humans,114 but contrary results 
were reported by Vaquero et al.,I15 who observed an in- 
creased absorption of 'Wu and an enhanced retention of 
copper in the liver of rats fed tea. 

Although the chelating action of polyphenols on 
metals such as copper and iron can have negative effects 
by reducing their bioavailability, this action can be benefi- 
cial in certain circumstances. In the native state, copper 
and iron can be the initiators of hydroxyl radical produc- 
tion by the Fenton and Haber-Weiss reactions.Il6 Chela- 
tion of these metals is one of the ways polyphenols exert 
their antioxidant activity. 

With regard to the effect of polyphenols on the avail- 
ability of other minerals, chlorogenic and caffeic acids 

have been shown to reduce zinc absorption in rats,l17 and 
negative effects of polyphenols also have been observed 
on the bioavailability of sodium118 and aluminum1I9 but 
not manganese,1z0 calcium, or magne~ium."~ 

Antioxidant Activity of Food Polyphenols 
Recent interest in food phenolics has increased owing to 
their roles as antioxidants, antimutagens, and scavengers 
of free radicals and their implication in the prevention of 
pathologies such as cancer and cardiovascular disease. 
Epidemiologic studies have shown a correlation between 
an increased consumption of phenolic antioxidants and a 
reduced risk of cardiovascular disease121-1u and certain 
types of Similarly, moderate consumption of 
red wine, which is rich in polyphenols, has been associ- 
ated with a low risk of coronary heart d i s e a ~ e . ~ ~ ~ J ~ ~  

Phenolic antioxidants function as terminators of free 
radicals and chelators of metal ions that are capable of 
catalyzing lipid peroxidation. Phenolic antioxidants inter- 
fere with the oxidation of lipids and other molecules by 
rapid donation of a hydrogen atom to radicals, as illus- 
trated in the following reactions: 

ROO* + PPH + ROOH + PP* 
RO* + PPH + ROH + PP* 

Moreover, the phenoxy radical intermediates are relatively 
stable; therefore, a new chain reaction is not easily 
inititated.-The phenoxy radical intermediates also act as 
terminators of the propagation route by reacting with other 
free radicals:1z7 

ROO- + PP* + ROOPP 
RO* + PP* + ROPP 

However, under certain conditions (high concentrations 
of phenolic antioxidants, high pH, presence of iron), phe- 
nolic antioxidants can initiate an autooxidation process 
and behave like pro oxidant^.^^^ 

The efficiency of polyphenols as antioxidant com- 
pounds greatly depends on their chemical structure. Phe- 
nol itself is inactive as an antioxidant, but ortho- andpuru- 
diphenolics have antioxidant capacity, which increases 
with the substitution of hydrogen atoms by ethyl or n- 
butyl groups.'27 Flavonoids are among the most potent 
plant antioxidants because they possess one or more of 
the following structural elements involved in the antiradi- 
cal activity (Figure 3): (1) an o-diphenolic group (in ring 
B), (2) a 2-3 double bond conjugated with the 4-0x0 func- 
tion, and (3) hydroxyl groups in positions 3 and 5.12"130 
Quercetin, a flavonol that combines all of these character- 
istics, is one of the most potent natural antioxidants. Also, 
the antioxidant efficiency of flavonoids is directly corre- 
lated with their degree of hydroxylation and decreases 
with the presence of a sugar moiety (glycosides are not 
antioxidants, whereas their corresponding aglycones are 
 antioxidant^).'^^ 

Flavonoids are very effective scavengers of hydroxyl 
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OH 

Figure 3. Structure of quercetin showing the structural charac- 
teristics related to its antioxidant capacity. 

and peroxyl radicals, although their efficiency as scaven- 
gers of the superoxide anion is not yet clear.L29 As men- 
tioned previously, polyphenols are chelators of metals and 
inhibit the Fenton and Haber-Weiss reactions, which are 
important sources of active oxygen radicals.lz6 In-addi- 
tion, flavonoids retain their free radical-scavenging ca- 
pacity after forming complexes with metal ions.13' 

Although antioxidant activity traditionally has been 
attributed only to soluble phenolic compounds (extract- 
able polyphenols), a recent report suggests that 
nonextractable polyphenols (polymeric proanthocyanidins 
and high-molecular-weight hydrolyzable tannins) are 1 5 
to 30 times more effective at quenching peroxyl radicals 
than are simple phen01s.I~~ Because these compounds are 
not absorbed, they could exert their antioxidant activity 
within the digestive tract and protect lipids, proteins, and 
carbohydrates from oxidative damage during digestion, 
and spare soluble antioxidants. 

Most studies have shown the antioxidant activity of 
polyphenols using different in vitro  model^,'^^'^^ and sub- 
sequently, phenolic compounds are classified according 
to their antioxidant capacity or antiradical effi- 
~iency. '*~J~ 'J~* The role of polyphenols in vivo is not clear. 
The antioxidant efficiency of polyphenols depends on the 
extent of absorption and metabolism of these compounds, 
as well as the activity of methoxylated and conjugated 
forms circulating in plasma. As mentioned before, only 
partial amounts of food polyphenols are absorbed in 
V ~ V O , ~ ~ ~  and only very low levels of tea catechins were 
detected in plasma after tea ingestion.61.62 Nevertheless, 
these low concentrations seem sufficient to exert a potent 
antioxidant action in vivo, as observed in human stud- 

and as suggested by epidemiologic data.12'-124 
Antioxidant polyphenols, mainly flavonoids, are po- 

tent inhibitors of LDL o ~ i d a t i o n . ' * ~ J ~ ~ J ~ ~ J ~ ~  Several mecha- 
nisms by which flavonoids exert their protective effect 
have been proposed: (1) reduction of free radical forma- 
tion, (2) protection of a-tocopherol in LDL from oxidation, 
(3) regeneration of oxidized a-tocopherol, and (4) chela- 

tion ofmetal ions (for areview see reference 145). Through 
these antioxidant actions, polyphenols exert their protec- 
tive effect against cardiovascular disease. In addition, fla- 
vonoids have antithrombotic and vasoprotective effects 
as well as hypolipidemic effects, as discussed previously. 

Different types of polyphenols (phenolic acids, hy- 
drolyzable tannins, and flavonoids) also have been shown 
to have anticarcinogenic Polyphenols might 
interfere in several of the steps that lead to the develop- 
ment of malignant tumors, thereby protecting DNA from 
oxidative damage, inactivating carcinogens, inhibiting the 
expression of mutant genes and the activity of enzymes 
involved in the activation of procarcinogens, and activat- 
ing enzymatic systems involved in the detoxification of 
xenobiotics (for a review see reference 129). Some polyphe- 
nols, however, also have been shown to have mutagenic 
activity in microbial assays, although contradictory re- 
sults, depending on the type of assay used and type of 
phenolic studied, have been reported, as reviewed by 
~rown.149 

Conclusion 

Although the number and variability of food phenolics 
make the study of this immense group of metabolites dif- 
ficult, their nutritional significance as well as their poten- 
tially beneficial health effects call for detailed studies. 
Polyphenols may have important applications in the pre- 
vention and treatment of highly prevalent human diseases, 
such as cardiovascular disease and cancer, as well as gas- 
tric and duodenal ulcer, allergy, vascular fragility, viral and 
bacterial infections, etc. To fully understand the actual 
significance of food phenolics, it is necessary to investi- 
gate not only their bioavailability but also their mecha- 
nisms of action and their possible synergism with other 
constituents either in the diet or within the human body, 
as well as the polyphenolic content and composition of 
foods. These factors constitute the body of future re- 
search. 
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