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Abstract: Fresh fruits and vegetables are perishable commodities requiring technologies to extend
their postharvest shelf life. Edible coatings have been used as a strategy to preserve fresh fruits and
vegetables in addition to cold storage and/or controlled atmosphere. In recent years, nanotechnology
has emerged as a new strategy for improving coating properties. Coatings based on plant-source
nanoemulsions in general have a better water barrier, and better mechanical, optical, and microstruc-
tural properties in comparison with coatings based on conventional emulsions. When antimicrobial
and antioxidant compounds are incorporated into the coatings, nanocoatings enable the gradual
and controlled release of those compounds over the food storage period better than conventional
emulsions, hence increasing their bioactivity, extending shelf life, and improving nutritional pro-
duce quality. The main goal of this review is to update the available information on the use of
nanoemulsions as coatings for preserving fresh fruits and vegetables, pointing to a prospective view
and future applications.

Keywords: nanotechnology; wax coating; natural antimicrobials; essential oils; nanocoatings;
post-harvest; bioactive compounds; quality; preservation methods; nanomaterials

1. Introduction

Fruits and vegetables are important sources of minerals, vitamins, and fibers, which
are essential for human’s well-being, and their consumption has been associated with
several beneficial effects on human health. The demand for those benefits has considerably
increased over the years due to consumer preference for natural products and changes
in lifestyle [1]. In this sense, fruits and vegetables are an important component of the
human diet.

After they are harvested, fruits and vegetables continue the respiration process, con-
suming O2 and releasing CO2 and water. Consequently, lipids, proteins, organic acids, and
carbohydrates are metabolized and energy replacement is compromised, as the vegetable
or fruit is separated from the mother plant [2]. Over time, quality characteristics such as
color, flavor, weight, nutritional value, and bioactive compounds continue to deteriorate
as a result of senescence [3]. The water released during the respiration process plays an
important role in the postharvest quality of fresh fruits and vegetables and can result in
loss of nutritional value, soft texture, sagging, wrinkling, and withering [4].

Although waxes were used to preserve citrus fruit in ancient China, it was not until
the twentieth century that edible coatings based on emulsions were developed to preserve
the quality of fresh fruits and vegetables [5]. These emulsions are typically formulated from
oils (vegetable- or animal-derived), waxes (paraffin, carnauba wax, candelilla, or beeswax),
and resins (shellac or wood rosin). Furthermore, polymer-based coating solutions can have
additional functionality when formulated with plant essential oils having antimicrobial
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activity [6]. Due to their hydrophobic nature, oils and waxes have proven to be an efficient
technology for fruits and vegetables preservation post-harvest, as they are able to minimize
water loss and gas exchange and improve and/or preserve the physicochemical properties,
such as color, firmness, fresh appearance, and microbial protection [7–10].

Recently, nanotechnology was introduced as a new tool for making coatings based on
emulsions with improved properties and functionalities. Coatings are made of macro- or
microemulsions (conventional) or nanoemulsions, for which the latter can be considered
a conventional emulsion with very small particles. Droplets in nanoemulsions are on a
nanoscale (particle radius less than 100 nm) dispersed in an aqueous solution [11]. This
changes the physical properties of the coating by further reducing moisture migration,
gas exchange, oxidative reactions, and suppressing pathogenic growth (microorganisms),
product deterioration and enhancing control of physiological disorders [12]. In addition,
coatings based on nanoemulsions have shown to be promising vehicles for several active
compounds, such as oil-soluble vitamins, antimicrobials, flavors, and nutraceuticals, which
may further contribute to maintenance of food product quality attributes [13].

Figure 1 shows a survey of published scientific manuscripts on nanoemulsions as edible
coatings for fruits and vegetables. The number of studies on the topic has increased consid-
erably over the past few years, demonstrating the scientific community’s increased interest
in the topic. However, studies concerning in vivo biological efficiencies are limited [14] and
applications on fruits and vegetables are even fewer. Thus, more research is essential to
determine this technology’s potential for future application on a commercial scale. In this
context, the objective of this review is to update the available information on the use of
nanoemulsions as coatings for preserving fresh fruits and vegetables.
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Figure 1. The distribution of publications related to ‘nanoemulsion as edible coating for fruits and
vegetables’ (2005–2021): ScienceDirect databases. Data for 2021 is as of September 2021.

2. Edible Coatings—An Overview

The first reports of the use of coatings on fruits appeared in the 12th century in China,
where wax was applied to citrus (lemons and oranges) to reduce mass loss and preserve
the fruit [15]. However, it was only in 1922 that the commercial scale application of waxes
began in order to increase postharvest conservation of fruits and vegetables, thus reducing
postharvest losses [16].
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Currently, edible coatings are used as a strategy to increase the shelf life and posthar-
vest quality of many fresh fruits and vegetables during storage [17,18]. Edible coatings
are defined as thin layers applied on the fruit surface, forming clear films produced from
food-grade materials and adding to, or as a substitute for, the waxes naturally present on
the fruit surface. As these films become part of the food and are consumed as such (for
fruits where the peel is consumed), the materials used in their composition must be GRAS
(Generally Recognized as Safe), that is, be non-toxic and safe for food [19].

Edible coatings are formulated from various biopolymers such as polysaccharide,
lipid, and protein compounds, or by combining materials resulting in improved proper-
ties (Table 1). They act as an obstacle to water vapor, gases, and solutes [20] as shown
in Figure 2.

Table 1. Summary of diverse structural materials frequently used for edible coating.

Material Main Matrices Positive Points Negative Points References

Polysaccharide Starch, chitosan, alginate, cellulose, and
its derivatives, and pectin

Good gas and mechanical
barrier properties

Poor moisture barrier due to
hydrophilic nature [21,22]

Lipid Animal, vegetable waxes and resins,
vegetable oil, and fatty acids

Good moisture barrier properties
with a shiny appearance

Poor mechanical and gas
barrier properties [18,23,24]

Protein
Gelatin, casein, whey protein, zein, soy

protein, myofibrillar protein, and
quinoa protein

Good gas barrier properties
without anaerobic conditions

Brittle and susceptible
to cracking [25]

Composite Combination of polysaccharide and/or
protein with lipids

Good moisture and gas
barrier properties

Formation of
non-homogeneous emulsion [26–29]
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The mechanism of action for coatings on fruit is similar to packaging with a modified
atmosphere; the coating produces a physical barrier that modifies gas exchange between
the interior of the fruit and the surrounding atmosphere, increasing the concentration
of CO2 and decreasing O2 [30]. This environment can effectively decrease respiration
rate, conserve stored energy, delay microbial growth, and therefore, extend the useful
life of the fruit [31]. The coating efficiency depends on the coating thickness formed
on the fruit surface, since there is a negative correlation between thickness and coating
permeability [32]. Another important point is related to low permeability coatings, based
on resins such as shellac, for example, which can restrict gas exchange almost entirely,
leading to the accumulation of CO2 within the fruit, and the production of compounds
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resulting from the fermentation process that can cause off-flavor, such as acetaldehyde and
ethanol, thus affecting fruit quality [18,33].

In addition to maintaining quality and postharvest conservation of fruits and veg-
etables, the coating materials can also act as carriers of compounds such as food coloring,
flavoring, antimicrobials, antioxidants, antagonistic microorganisms, among others [34,35].
In this sense, several natural bioactive compounds have been incorporated into edible coat-
ing materials such as essential oils [36–38], plant extracts [39,40], vitamins [34], antagonistic
microorganisms [41,42], and antibrowning or firming agents in fresh cut fruit. [43,44].

3. Methods to Apply Edible Coatings

The effectiveness of coatings in preserving fresh fruits and vegetables is influenced
by the application method, which will be chosen according to the nature of the food
to be coated, the surface attributes, the rheological properties of the solution, and the
main purpose of the coating [45]. The adhesion of coatings to food surfaces is essential
for performance of their intended function [16,46]. Wettability is used to quantify the
interfacial interaction that occurs between the food surface and the coating. This variable
must be taken into account when assessing the performance of the coating solution on the
food surface [31].

Dipping (Figure 3a), spraying (Figure 3b), and hand coating (Figure 3c) techniques
are the most common methods for applying edible coatings to fresh fruits and vegetables.
Other techniques such as fluidized bed and foaming are also available; however, these
techniques are rarely used on commercial and laboratory scales [45].
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On a laboratory scale, immersion is one of the main methods used for coating fruits
due to its simplicity, without dependence on equipment, and uniformity of film obtained.
In this method, the entire surface of the food is submerged in the film-forming solution at
a constant speed, allowing full surface coverage, ensuring complete surface wetting [47].
After application, the excess solution is drained to eliminate the overload of film-forming
solution on the fruit surface [48]. Finally, the food is dried with the excess solvent and liquid
being evaporated to leave the film in contact with the food surface. Drying can take place at
room temperature or using a heated air tunnel after draining the solution. This technique
allows the application of coating solutions with a wide viscosity range [46]. A negative
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point of this technique is the possibility of cross-contamination from fruit to fruit during
the immersion process due to the accumulation of residues and microbial organisms [45].

To avoid this problem, products that will be coated must be properly cleaned and
sanitized, and the coating solution replaced frequently [15]. According to Raghav et al. [16],
in general, fruits and vegetables are immersed for 5–30 s in the coating solution.

In turn, the spraying technique, most popular in packing houses, provides a homo-
geneous and attractive coating. In addition, it avoids the possibility of contaminating the
coating solution [49]. This process increases the liquid surface through the formation of
drops and distributes them over the food surface [45]. During spray application, the fruit
or vegetable is placed on a plate or rotating rollers at a coordinated speed, under dispersing
nozzles activated manually or automatically. This procedure is repeated until the desirable
coating thickness is achieved. A drawback of this technique is that viscous solutions cannot
be sprayed as they clog the equipment [50].

Another method to apply a filmogenic solution is by gloved hands to the fruit surface.
Fruits can be coated by spreading a uniform amount of coating solution by hand while
wearing latex gloves. It is appropriate on a laboratory scale to avoid solution contamina-
tions and to minimize waste of experimental coating solutions during screenings. However,
a negative aspect consists of the non-homogeneous film thickness formed on the entire
fruit surface [18,35].

4. Nanomaterials in Edible Coatings

In recent years, nanotechnology has been used as an important tool to increase the
storage period for food products. The application of nanoscale particles provides different
and improved properties compared to particles with larger size. Related to foods, nanotech-
nology has a wide spectrum of uses in films and coatings due to the improved features
they impart [51].

Figure 4 shows the advances in the development of nanosystems incorporated with
food-grade ingredients, which makes it feasible to explore functional modifications in food
coating materials that include nanoemulsions, polymeric nanoparticles, nanostructured
lipid transporters, nanotubes, nanocrystals, nanofibers, and others [52]. Nanosystems,
when incorporated into matrices based on hydrocolloids (proteins or carbohydrates), give
rise to nanocomposites, which are the combination of two or more materials, one of which
is on a nanoscale, in order to improve coating properties [52,53].
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The main changes due to use of nanosystems in nanocomposite coatings refer to the
water barrier, optical and microstructural mechanical properties, and the antimicrobial and
antioxidant effects. Nanoparticles in coatings potentiate these activities when antimicrobial
or antioxidant compounds are incorporated in the coating, by enabling their gradual
and controlled release over the period of fruit storage, sometimes under different storage
conditions, hence improving bioavailability of these compounds over time [52,54]. The
improvements in these properties are important to guarantee food quality maintenance
as well as to reduce the development of decay microorganisms (bacteria, filamentous
fungi, and yeasts) and action of free radicals that deteriorate food and reduce shelf life [55].
Another advantage of adding active agents to nanosystems is that a smaller proportion of
these substances is necessary to obtain good activity; therefore, the use of these compounds
in low concentrations does not negatively affect food sensory properties [12].

5. Fundamentals of Nanoemulsions

Emulsions are generally made of two immiscible liquids, commonly oil and water,
forming a relatively stable mixture. Generally, emulsions are systems that contain a dis-
persed and continuous phase and can be classified according to the three-dimensional
organization of the oil and water phases. Oil-droplets dispersed within an aqueous
phase is named oil-in-water (O/W) emulsion, whereas water-droplets dispersed in the
oil phase is classified as water-in-oil (W/O) emulsion, and they are the most common
emulsions [14,56,57]. Figure 5 shows the schematically structures of O/W (Figure 5A) and
W/O (Figure 5B) emulsions, emphasizing the micelle structures dispersed in the continu-
ous phase.
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Emulsions are classified into three main classes according to thermodynamic stability,
stable mechanisms, and physical properties: macroemulsion or conventional emulsion,
nanoemulsion, and microemulsion. Conventional and nanoemulsions are thermodynami-
cally unstable, while the microemulsion is stable. The droplet mean radius for conventional
emulsions are bigger, which distinguishes them from nanoemulsions with a radius of less
than 100 nm [11,57,58]. The droplet size in nanoemulsions is a key-point that influences
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their capability to improve the bioavailability of added hydrophobic substances, such
as carotenoids [58], and increase antimicrobial essential oil properties [59] or oil com-
pounds [60]. The nanoemulsion classes will be further discussed in this article, with the
focus of nanoemulsions as edible nanocoatings.

5.1. Nanoemulsions and Production Methods

The small size of particles in nanoemulsions allows potential advantages over conven-
tional emulsions, such as greater stability concerning particle aggregation and gravitational
separation, in addition to high optical transparency, modification of the physical properties
of the coating, and increased bioavailability of bioactive-loaded lipid droplets [57]. Free
nanoemulsion-based delivery systems increased the bioaccessibility of vitamins (D) and
carotenoids (β-carotene and curcumin) [58,61]; however, studies have demonstrated that
bioactive-loaded nanoemulsions prepared with a biopolymer mixture can be trapped in
the matrices and decrease bioaccessibility.

Nanoemulsions need energy for their formation, which is provided by mechanical
equipment or physical and chemical properties of the system. Procedures using mechanical
energy are called high energy methods and use microfluidizers, high-pressure homoge-
nizers, and ultrasonic homogenizers. The methods that employ the system’s physical and
chemical properties are categorized as low energy, such as spontaneous emulsification,
phase inversion temperature, and emulsion inversion methods [54,57].

When high-energy methods are employed, the surfactants help break oil-droplets
inside the homogenizer by decreasing interfacial tension, thus promoting smaller droplets
and preventing droplet aggregation. A high shear rate is necessary to break the droplet to
form nano-droplets, and is generally achieved by high-pressure homogenizers, as the use
of high energy generates forces that can break the droplets in the dispersed phase [56,57].
Those methods are well established in the food industry and can be adapted for nanoemul-
sion production. On the other hand, for low energy methods, surfactants promote small
droplet spontaneous formation due to their ability to generate extremely low interfacial
tensions under specific conditions. Therefore, the surfactants utilized are extremely impor-
tant because the emulsion pH stability, ionic strength, heating, cooling, and storage are
mainly determined by the amphiphilic molecule chosen [56,57].

The amphiphilic material, such as surfactants, phospholipids, proteins, and polysac-
charides, reduces the interfacial tension and maintains droplet stability. Emulsions (O/W
or W/O) (Figure 6A,B) are the most stable systems; however in unusual regimes, multiple
emulsions such as W/O/W and O/W/O (Figure 6C,D) may be formed and are usually ex-
tremely unstable to coalescence [14,54,56]. Most fruits and vegetables contain a high-water
volume; therefore, among emulsions the O/W type (Figure 6A) is the most explored for food
systems due to the possibility of loading the oil-droplets with lipophilic key-compounds
surrounded by water [14,54].
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5.2. Surfactants

Surfactants can be classified according to their electrical characteristics as ionic, non-
ionic, and zwitterionic. Most foods surfactants are ionic, such as esterified monoglycerides,
which are mainly negatively charged and can form nanoemulsions using low or high
energy. Non-ionic surfactants also can be used for both methods and have low toxicity
and irritability, including compounds such as Tween® (condensate of sorbitol fatty acid
esters and ethylene oxide) and Span® (a family of fatty acids sorbitan). On the other
hand, zwitterionic surfactants contain two or more ionizable groups with opposite charges,
and consequently, they can have a negative, positive, or neutral charge depending on
the pH solution. For example, this group includes lecithin, a phospholipid widely used
in foods [57,62].

One of the main aspects of an emulsion formulation is the choice of surfactant. The
hydrophilic–lipophilic Balance (HLB) system was developed, which represents the bal-
ance of the size and strength of the polar and non-polar groups [62]. It demonstrates
molecule properties as amphiphilic compounds using a numerical scale, assigning higher
HLB values as the substance is more hydrophilic [62]. However, the HLB system only
considers the properties of the surfactant itself. For this reason, the hydrophilic–lipophilic
deviation (HLD) system is another approach to the behavior exhibited by surfactant–
oil–water and usually more suitable in formulations [57,63]. In addition, proteins, poly-
mers with amphiphilic properties, and combinations of polymers and surfactants can act
as emulsifiers [64].

Studies have demonstrated the importance of modulating nanoemulsions composition
and structure to achieve higher digestion and absorption in the gastrointestinal tract and
to efficiently deliver compounds such as vitamins and nutraceuticals [54,58,65,66]. There-
fore, the choice of emulsifier is of extreme importance since it can improve carotenoids
bio-accessibility, for example. In a study performed by Yao et al. (2019) [65], the authors
demonstrated the relationship between carotenoids bio-accessibility from spinach and
co-ingesting with excipient nanoemulsions: nanoemulsions containing different ratios of
medium or long-chain triglycerides in the oil phase composition decreased β-carotene bioac-
cessibility when the ratio of medium-chain triglycerides was increased. The findings were
credited to the formed micelle’s ability to hold the carotenoids in their hydrophobic domains.

6. Plant-Based Nanoemulsions as Edible Coatings on Fruits and Vegetables Postharvest
6.1. Coatings Based on Essential Oil Nanoemulsions

One of the main features can be in the form of antimicrobial nanoemulsions, for exam-
ple, nanoemulsions based on plant essential oils, which are associated with biopolymers
such as alginate, chitosan, and starch, among others. It has been shown that when essential
oils are encapsulated in nanoemulsions, they have less impact on the sensory proper-
ties of the food, masking the taste or smell of the core material (coating), yet providing
better biological activity of essential oils due to the increase in the surface area [67]. In
this way, it is possible to use low doses of bioactive material, increasing the transport
of active ingredients through biological membranes, thus intensifying the bioavailability
of bioactive compounds, in addition to less interaction with other components of the
food matrix. Other advantages are the low mass transport of compounds into and out
of the coating, less impact on optical, barrier, and microstructural properties and greater
coating stability [68,69].

Essential oils have received special attention as active ingredients applicable in food
coatings, due to their potent antimicrobial and antioxidant activities [70]. Essential oils are
volatile aromatic substances of low molecular weight (for example, phenolic compounds,
such as monoterpenes, flavonoids, and phenolic acids) produced by plants (for exam-
ple, cinnamon, thyme, lavender, ginger, palmarosa, lemongrass, mint, citrus fruits, and
fennel) or their isolated components (for example, eugenol, geraniol, menthol, limonene,
carvacrol, and linalool) that can reduce microbial growth in food, and have been studied
as natural antimicrobials in food for decades [71]. However, their volatile nature, low
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water solubility, and strong aroma limit their applications in foods. In this sense, using
nanotechnological approaches is a promising strategy to enable the application of essential
oils as natural antimicrobials in foods, overcoming their limitations and increasing their
antimicrobial activity [52].

Table 2 presents the main types of nanoemulsions as edible coatings classified by
matrix type and their impact on fruit and vegetable shelf life.

Table 2. Main types nanoemulsions as edible coatings and their impact on fruit and vegetable shelf life.

Matrix Bioactive Substance or
Lipid Compound

Production
Technique Functionality Fruit or Vegetable Reference

Modified chitosan
Lemon, mandarin,
oregano, or clove

essential oils

High-pressure
homogenization (HPH)

Increase the antimicrobial
activity of the essential oil

and improve the homogeneity
and stability of the emulsion

Arugula leaf
(Eruca sativa) [72]

Chitosan
Carvacrol, bergamot,
mandarin, and lemon

essential oils

High-pressure
homogenization

Increase the antimicrobial
activity of essential oils

Green beans
(Phaseolus vulgaris) [73]

Sodium alginate Basil essential oil Ultrasound Increase the antimicrobial
activity of essential oil

Okra (Abelmoschus
esculentus) [74]

Pullulan Cinnamon essential oil Ultrasound
Improve the distribution of

oil in the matrix and increase
its antimicrobial activity

Strawberry
(Fragaria × ananassa) [75]

Carnauba wax Lemongrass essential oil Dynamic high pressure

Increase the antimicrobial
activity of the essential oil

and improve the homogeneity
and stability of the emulsion

Plums
(Prunus salicina) [76]

Carnauba wax Lemongrass essential oil
High shear probe and

high-pressure dynamic
processing (DHP)

Increase the antimicrobial
activity of essential oil

Grape berry (Vitis
labruscana Bailey) [77]

Candelilla wax Extract of tarbush High-speed stirrer
Improved the wettability of
the nanocoating on the Fuji

apple surface

Fuji apple (Malus
domestica ‘Fuji) [78]

Quinoa
protein/chitosan Thymol 1200 rpm agitation

Increase the antimicrobial
activity of the active

compound and improve
dispersion in the matrix

Strawberry
(Fragaria × ananassa) [79]

Sodium alginate Lemongrass essential oil Microfluidization

Improve the stability of the
emulsion and increase the

antimicrobial activity of the
essential oil

Fresh-cut Fuji apples
(Malus domestica ‘Fuji) [59]

Hydroxypropyl
methylcellulose

Carnauba wax
nano-emulsion

High-pressure
homogenization (HPH)
and mechanical stirring

Reduce gas permeability and
moisture loss

‘Redtainung’
Papaya

(Carica papaya)
[28]

Sodium alginate Citral Ultrasound

Improve the dispersion of the
active compound in the
matrix and increase its
antimicrobial activity

Fresh cut pineapples
(Ananas comosus) [60]

Carnauba wax Oleic acid and
Carnauba wax

High-pressure
homogenization (HPH)

Improve optical properties,
and emulsion stability

‘Nova’ mandarins
(Citrus reticulata) and

‘Unique’ tangors
(C. reticulata C. sinensis)

[18]

Chitosan Cellulose nanocrystal and
oleic acid

Ultra turrax
homogenizer

Increase coating stability at
high humidity, adhesion on

fruit surface and delayed
ripening of pears

Bartlett pears
(Pyrus communis) [80]

Edible coatings based on nanoemulsions of essential oils have been studied as an al-
ternative to prolong fresh fruit and vegetable shelf life. For example, a coating based on the
nanoemulsion of lemon essential oil and chitosan increased the shelf life of arugula leaves
by 7 days compared to a coating of chitosan or lemon oil alone [72]. Likewise, coatings
based on modified chitosan and carvacrol nanoemulsions completely inhibited the growth
of Escherichia coli on fresh green beans during the 11-day period under refrigeration [73].
Gundewadi et al. [74] also reported that the nanoemulsification of basil essential oil in
an alginate coating was more effective than its respective microemulsion and presented
better coating stability. In addition, when applied to okra fruits, nanoemulsion was more
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efficient in preserving texture, color, and sensory characteristics compared to control fruits.
The essential oil of nanoemulsified basil showed greater antifungal activity against fungal
pathogens than microemulsions. Chu et al. [75] developed a pullulan coating with a cinna-
mon essential oil nanoemulsion for strawberry storage. The nanoemulsion-based coating
was more effective than other coatings in reducing loss of mass, firmness, total soluble
solids, acidity, and controlling the growth of fungi and bacteria during fruit storage.

In another study, Prakash, Baskaran, and Vadivel [60], evaluated the effect of a coating
based on sodium alginate and citral nanoemulsion on the quality of fresh cut pineapples.
Coatings based on nanoemulsions were effective at reducing microbial growth during
storage. In addition, at a concentration of 0.2% of citral nanoemulsion, the coating reduced
the presence of Salmonella enterica and Listeria monocytogenes after artificial inoculation [60].
The coating based on nanoemulsions of lemongrass essential oil, Tween® 80 and alginate
was more effective at preserving the characteristics of minimally processed Fuji apples than
their respective conventional emulsions. The nanoemulsion coating inhibited the growth
of artificially inoculated E. coli on fruits faster than conventional emulsions [59].

6.2. Coatings Based on Plant-Based Wax Nanoemulsions

Commercial coatings based on approved waxes must meet state/national fruit and
vegetable additive regulations and be considered safe for consumption. However, to im-
prove the characteristics of wax-based coatings, they are combined with synthetic chemicals
to prevent microbiological deterioration and to ensure homogeneous stability of the coating
during product storage. Commercial coatings are typically formulated using oxidized
polyethylene wax (a by-product of the petroleum industry), carnauba wax (from the leaves
of the carnauba palm, Copernicia cerifera), candelilla wax (from the candelilla shrub, Euphor-
bia cerifera), and shellac (from the insect bug Kerria lacca) as matrices, combined with water
and other agents such as oleic acid, morpholine, ammonia, polydimethylsiloxane antifoam,
and others [81].

The compounds combined with waxes used as emulsifying, moisturizing, and an-
timicrobial agents in commercial coatings, are mostly synthetic chemical products and
could be a concern for human health [82]. As an example, morpholine is a base acting as a
counterion to facilitate fatty acids emulsification in waxes. In the presence of nitrite/nitrate,
morpholine can form N-nitrosomorpholine, a potent mutagen and carcinogen [83,84]. N-
nitrosomorpholine was not found on coated fruit surface, but the possibility of its formation
in the gut from reaction of morpholine with dietary nitrates was considered; it was found
at concentrations less than the safe dose of 4.3 ng/kg body weight/day, not enough to raise
concerns [85]. Ammonia could be used as a replacement for morpholine [86], but its highly
volatile and irritant nature makes it less easy to use than morpholine.

Consumers are increasingly concerned about the safety and quality of food, driving
the demand for so-called “environmentally friendly coatings”, that is, coatings based on
natural products of plant origin that do not present any harm to the consumer’s health
if consumed. The use of waxes and compounds of animal origin has been limited by
vegan and vegetarian consumers, consumers who are allergic to animal products (such
as chitosan) and religious beliefs that do not encourage the consumption of animals [87].
Therefore, the demand for plant-based wax-based coatings is an important market for fresh
fruits and vegetables, and nanotechnology is a promising tool to meet this demand by
improving the properties of these coatings, especially wax-based ones, reducing the need
of synthetic additives.

Nanotechnology has been successfully used to produce plant-based waxes nanoemul-
sions, such as carnauba wax [18] and candelilla wax [78] without the addition of morpholine.
Wax-based nanoemulsions can have improved barrier properties due to the small size of
the droplets, promoting greater homogeneity compared to conventional emulsions, greater
transparency, improved physico-chemical properties (optical, mechanical, and barrier) and
greater stability in comparison with conventional emulsions [18,54,78]. In addition, these
nanoemulsions can be used for the development of nanocomposite coatings, in combina-
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tion with hydrocolloid components (polysaccharides and proteins) in order to improve the
water barrier properties of these compounds and minimize the impact of the incorporation
of lipid compounds in the matrix hydrocolloids [29].

Lipid nanoemulsions made from plant-based waxes have shown greater effectiveness
as edible coatings than conventional emulsions on fresh fruits and vegetables preservation
(Table 2). The carnauba wax nanoemulsion coating showed less water loss, conferred gloss,
and caused less ethanol production than shellac in coated ‘Nova’ mandarins (Citrus reticu-
lata) and ‘Unique’ tangors (C. sinensis) [18]. In addition, the coating based on carnauba wax
nanoemulsion exhibited less changes in the fruit internal atmosphere and volatile profile,
and consequently, better flavor compared to the conventional carnauba wax emulsion and
commercial shellac [18].

Lipid nanoemulsions produced from waxes, such as carnauba or candelilla, have been
shown to be suitable vehicles for carrying bioactive compounds, such as plant extracts
and essential oils [78,88]. They can improve the physical stability of the active substances,
and improve the bioactivity of these compounds, and due to the prolonged and slow
diffusion, they reduce the impact of these substances on the sensory properties of fruits
and vegetables [88]. De Léon-Zapata et al. [78] developed candelilla wax nanoemulsions
added with tarbush extract and evaluated its effect on the preservation of Fuji apples. The
combination of extract and nanocoating reduced the size of the droplets and improved
the zeta potential and optical properties of the coating. When applied to Fuji apples,
the nanocoating effectively reduced physico-chemical and microbiological changes and
delayed fruit senescence in comparison with the control treatment.

In another study, a nanoemulsion of carnauba wax combined with lemongrass es-
sential oil nanoemulsion was applied to plums [76]. The coatings were able to inhibit
the growth of S. typhimurium (S. enterica) and E. coli O157: H7 inoculated plums during
storage, and did not significantly affect their taste and appearance (brightness). In addition,
nanoemulsion coatings were effective at reducing weight loss, ethylene production and
respiration rate. Fruit coated with nanoemulsions showed greater firmness and increase
in phenolic compounds content during storage in comparison with uncoated fruits [76].
A similar result was observed in another study carried out by these authors with grape
berries. The coating based on carnauba wax and lemongrass essential oil nanoemulsion
inhibited the growth of S. typhimurium and E. coli O157: H7 inoculated fruit. Lemongrass
in nanoemulsions did not affect berry taste and improved their brightness. Coatings based
on nanoemulsions were also able to reduce weight loss and maintain firmness, phenolic
compounds, and antioxidant activity in berries. The coatings demonstrated the potential
to reduce microbiological contamination of grape berries by foodborne pathogens and
prolong their shelf life. [77].

7. Trends in Materials Based on Nanoemulsions with Potential for Application in the
Preservation of Fruits and Vegetables

New coating materials based on nanoemulsions with potential for application in fruits
and vegetables have been developed in the last two years with the aim of contributing
even more to the preservation of these products. One way to develop these functionalized
materials is to combine composites with different properties to develop a functionalized
coating. For example, de Oliveira Filho et al. [89] developed a functionalized coating com-
bining arrowroot starch (biopolymeric matrix), carnauba wax nanoemulsion (to improve
the water barrier properties of the coating), cellulose nanocrystals (to improve mechanical
properties and stabilize the emulsion), and essential oils (to confer antimicrobial activity).
The combination of compounds resulted in a coating material with excellent water barrier,
mechanical, thermal, optical, microstructural, and antimicrobial properties against fungi
that attack fruits during post-harvest.

Another increasingly explored trend in the development of new coatings based
on nanoemulsions with better stabilities is the use of solid particles to form Pikering
nanoemulsions, that is, nanoemulsions stabilized with solid particles such as cellulose
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nanocrystals [90], starch nanocrystals [91], γ-Al2O3 nanoparticles [92], cyclodextrin [93],
among others.

Pickering nanoemulsions have excellent stability due to irreversible adsorption that oc-
curs between solid particles at the oil–water interface due to the high adsorption energy [94].
Another characteristic of these nanoemulsions is the ability to release active ingredients en-
capsulated under specific conditions, such as pH and temperature [93]. Almasi, Azizi, and
Amjadi [95] compared two coating materials based on pectin, one with marjoram essential
oil encapsulated in a whey protein/inulin stabilized Pickering nanoemulsion, and the other
with marjoram essential oil nanoemulsified with Tween 80. Coatings based on pectin with
Pickering nanoemulsions presented mechanical and water barrier properties superior to
those based on standard nanoemulsion. In another study, López-Monterrubio et al. [96]
developed highly efficient β-carotene nanoemulsions stabilized by a complex formed by
hydrolyzed whey protein and pectin. The nanoemulsions showed good stability during
the 30-day storage period with low formation of clumps.

Deng et al. [80] developed coatings based on chitosan and Pickering nanoemulsion
of oleic acid stabilized with cellulose nanocrystals and evaluated their effects on the
postharvest conservation of green D’Anjou and Bartlett pears (Pyrus communis L.). The
coating formulated with 5% cellulose nanocrystals showed strong adhesion to the fruit
surface, showing greater gas barrier property compared to the commercial Semperfresh™
product, and presented a more homogeneous matrix, being effective in delaying ripening
and increased the shelf life of pears during storage.

Although the above new materials have been little studied in food systems, the results
described in the literature are very encouraging.

8. Potential Toxicity, Limitations, and Regulatory Aspects of Nanoemulsions

Nanoemulsions, due to the nanometric size of the droplets, may partially remain
intact during digestion, representing potential safety risks related to the compounds used
for their production (such as surfactants). They can be of concern in metabolic or hormonal
dysregulation due to their rapid absorption compared to conventional emulsions, their
ability to increase the bioavailability of bioactive agents to a toxic level, and the possibility
of increased absorption by epithelial cells which can cause changes in the functionality of
the gastrointestinal tract [97]. However, as they have a high surface area, nanoemulsions
can also be quickly digested by enzymes from the gastrointestinal tract, reducing the
possible toxic effect that can occur due to their accumulation in organ cells [98].

In vitro studies were performed using cell cultures, usually models of normal cells
such as fibroblasts, to investigate potential toxicity of nanoemulsions. Kaur et al. [99]
reported that nanoemulsions based on tocopheryl polyethylene glycol succinate (TPGS),
lemon oil, Tween-80, and water did not show toxicity in Hep G2 cells. In another study,
Marchese et al. [100] observed that bergamot essential oil nanoemulsions showed cytotoxic
activity against Caco 2 cells at high concentrations. A limitation of these studies is the fact
that authors have not previously exposed the nanoemulsions in simulated conditions of
the gastrointestinal tract before contact with the cells.

Knowledge about the potential toxicity of nanoemulsions in vivo is still limited and
should be investigated [97]. The effect of nanoemulsions based on antimicrobial com-
pounds, such as essential oils, on the gastrointestinal tract is also poorly reported in the
literature. This effect must be carefully studied, as antimicrobial compounds can influence
the intestinal microbiota or epithelial cells of the gastrointestinal tract.

In a recent study, Hort et al. [101] evaluated the toxicity of Miglyol and egg lecithin
nanoemulsions using an in vivo model (male Wistar rats). The nanoemulsions were orally
administered to rats for 21 days at lipid concentrations of 200, 400, or 800 mg/kg of
body weight. The results of biochemical, hematological, oxidative stress, and genotoxicity
parameters showed that nanoemulsions could be considered safe for oral administration,
but high doses by the parenteral route could cause toxic effects.
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The few studies suggest that nanoemulsions formulated with GRAS ingredients do
not exhibit strong cytotoxic effects. The nanometer size of the droplets suggests that they
are rapidly transformed into monoglycerides and free fatty acids in the small intestine,
which are normal digestion products and should not have toxic effects [57].

As for regulatory aspects, essential oils and other antimicrobial agents are mainly
regulated by the European Food Safety Authority (EFSA) in Europe and the Food and Drug
Administration (FDA) in the United States [102]. However, for nanoemulsions there is no
international authority that makes this regulation. The FDA addresses the regulation of
nanotechnology products as guidance for industries. The European Council and Parliament
have regulated food nanotechnology as new food products or food ingredients [103].

9. Conclusions and Future Perspectives

The use of substances obtained from plant-based natural sources has emerged as a
trend in the fresh fruit and vegetable market for coating applications. The application
of these compounds on a nanoscale has advantages allowing a wider use in relation to
particles on larger scales. Recent studies indicate that nanoemulsions play an important
role in the development of a new generation of coatings with improved properties for the
preservation of fresh fruits and vegetables. This emerging technology makes it possible
to improve the physical stability and performance of active substances within an edible
coating, bringing the possibility of increasing the quality and/or nutritional value of fruits
and vegetables. Although the evidence published to date suggests that nanoemulsions
applied as edible coatings can extend the life of different fruits and vegetables, there are
other important aspects to explore before considering them on a commercial scale in future
trends, such as the bioavailability of bioactive compounds incorporated in the nanoemul-
sions, potential toxicity and digestibility, for example. Most of the tested nanoemulsion
coatings have antimicrobial properties; however, it can also be possible to produce and
apply edible coatings with health-promoting substances.

Author Contributions: Writing—original draft preparation, J.G.d.O.F. and M.M.; writing—review
and editing, M.D.F. and A.P.; visualization, J.G.d.O.F. and M.M.; supervision, M.D.F.; project admin-
istration, M.D.F.; funding acquisition, M.D.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by FAPESP (process 2016/23419-5,2018/10657-0, and 2018/24612-9),
CAPES (001), CNPq (process 407956/2016-6; fellowship 310728/2019-3), Empresa Brasileira de Pesquisa
Agropecuária (Embrapa), Rede Agronano, and MCTI-SisNano from Brazil.

Acknowledgments: Authors thank Elizabeth Baldwin for reviewing the manuscript and construc-
tive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Disclaimer: Mention of a trademark or proprietary product is for identification only and does not
imply a guarantee or warranty of the product by the U.S. Department of Agriculture. The U.S.
Department of Agriculture prohibits discrimination in all its programs and activities on the basis of
race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and
marital or family status.

References
1. Dhandevi, P.; Jeewon, R. Fruit and vegetable intake: Benefits and progress of nutrition education interventions-narrative review

article. Iran. J. Public Health 2015, 44, 1309–1321.
2. Brizzolara, S.; Manganaris, G.A.; Fotopoulos, V.; Watkins, C.B.; Tonutti, P. Primary metabolism in fresh fruits during storage.

Front. Plant Sci. 2020, 11, 80. [CrossRef] [PubMed]
3. Anwar, R.; Mattoo, A.K.; Handa, A.K. Ripening and senescence of fleshy fruits. In Postharvest Biology and Nanotechnology;

Paliyath, G., Subramanian, J., Lim, L.-T., Subramanian, K.S., Handa, A.K., Mattoo, A.K., Eds.; John Wiley & Sons, Inc.:
Hoboken, NJ, USA, 2019; pp. 15–51.

4. Nunes, C.N.; Emond, J.-P. Relationship between weight loss and visual quality of fruits and vegetables. Proc. Fla. State Hort. Soc.
2007, 120, 235–245.

http://doi.org/10.3389/fpls.2020.00080
http://www.ncbi.nlm.nih.gov/pubmed/32140162


Foods 2021, 10, 2438 14 of 17

5. Baldwin, E.A. Edible coatings for fresh fruits and vegetables: Past, present, and future. Edible Coat. Film. Improv. Food Qual. 1994, 1, 25.
6. Acevedo-Fani, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Nanoemulsions as edible coatings. Curr. Opin. Food Sci. 2017, 15, 43–49. [CrossRef]
7. Bai, J.; Baldwin, E.A.; Hagenmaier, R.H. Alternatives to shellac coatings provide comparable gloss, internal gas modification, and

quality for ‘Delicious’ apple fruit. HortScience 2002, 37, 559–563. [CrossRef]
8. Navarro-Tarazaga, M.-L.; Perez-Gago, M.-B.; Goodner, K.; Plotto, A. A new composite coating containing HPMC, beeswax, and

Shellac for ‘Valencia’ oranges and ‘Marisol’ tangerines. Proc. Fla. State Hort. Soc. 2007, 120, 228–234.
9. Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; del Río, M.Á.; Palou, L. Effect of antifungal hydroxypropyl methylcellulose (HPMC)–

lipid edible composite coatings on postharvest decay development and quality attributes of cold-stored ‘Valencia’ oranges.
Postharvest Biol. Technol. 2009, 54, 72–79. [CrossRef]

10. Nawab, A.; Alam, F.; Hasnain, A. Mango kernel starch as a novel edible coating for enhancing shelf-life of tomato (Solanum
lycopersicum) fruit. Int. J. Biol. Macromol. 2017, 103, 581–586. [CrossRef]

11. McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [CrossRef]
12. Hasan, S.K.; Ferrentino, G.; Scampicchio, M. Nanoemulsion as advanced edible coatings to preserve the quality of fresh-cut fruits

and vegetables: A review. Int. J. Food Sci. Technol. 2020, 55, 1–10. [CrossRef]
13. Salvia-Trujillo, L.; Soliva-Fortuny, R.; Rojas-Graü, M.A.; McClements, D.J.; Martín-Belloso, O. Edible nanoemulsions as carriers of

active ingredients: A review. Annu. Rev. Food Sci. Technol. 2017, 8, 439–466. [CrossRef]
14. Jin, W.; Xu, W.; Liang, H.; Li, Y.; Liu, S.; Li, B. Nanoemulsions for food: Properties, production, characterization, and applications.

In Emulsions; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–36.
15. Andrade, R.D.; Skurtys, O.; Osorio, F.A. Atomizing spray systems for application of edible coatings. Compr. Rev. Food Sci. Food Saf.

2012, 11, 323–337. [CrossRef]
16. Raghav, P.K.; Agarwal, N.; Saini, M. Edible coating of fruits and vegetables: A review. Int. J. Sci. Res. Mod. Educ. 2016, I, 188–204.
17. Ghoora, M.D.; Srividya, N. Effect of packaging and coating technique on postharvest quality and shelf life of Raphanus sativus L.

and Hibiscus sabdariffa L. microgreens. Foods 2020, 9, 653. [CrossRef]
18. Miranda, M.; Sun, X.; Ference, C.; Plotto, A.; Bai, J.; Wood, D.; Assis, O.B.G.; Ferreira, M.D.; Baldwin, E. Nano-and Micro-Carnauba

Wax Emulsions versus Shellac Protective Coatings on Postharvest Citrus Quality. J. Am. Soc. Hortic. Sci. 2020, 1, 1–10. [CrossRef]
19. Burdock, G.A.; Carabin, I.G. Generally recognized as safe (GRAS): History and description. Toxicol. Lett. 2004, 150, 3–18. [CrossRef]
20. Riva, S.C.; Opara, U.O.; Fawole, O.A. Recent developments on postharvest application of edible coatings on stone fruit: A review.

Sci. Hortic. 2020, 262, 109074. [CrossRef]
21. Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.; Vuong, Q.V. Starch-based films: Major factors affecting their

properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [CrossRef]
22. Mohamed, S.A.; El-Sakhawy, M.; El-Sakhawy, M.A.-M. Polysaccharides, protein and lipid-based natural edible films in food

packaging: A review. Carbohydr. Polym. 2020, 238, 116178. [CrossRef]
23. Dehghani, S.; Hosseini, S.V.; Regenstein, J.M. Edible films and coatings in seafood preservation: A review. Food Chem. 2018,

240, 505–513. [CrossRef]
24. Eddin, A.S.; Ibrahim, S.A.; Tahergorabi, R. Egg quality and safety with an overview of edible coating application for egg

preservation. Food Chem. 2019, 296, 29–39. [CrossRef] [PubMed]
25. Arnon-Rips, H.; Poverenov, E. Improving food products’ quality and storability by using Layer by Layer edible coatings.

Trends Food Sci. Technol. 2018, 75, 81–92. [CrossRef]
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