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Abstract: The review provides an overview of research findings on microencapsulation for functional
textile coatings. Methods for the preparation of microcapsules in textiles include in situ and interfacial
polymerization, simple and complex coacervation, molecular inclusion and solvent evaporation
from emulsions. Binders play a crucial role in coating formulations. Acrylic and polyurethane
binders are commonly used in textile finishing, while organic acids and catalysts can be used for
chemical grafting as crosslinkers between microcapsules and cotton fibres. Most of the conventional
coating processes can be used for microcapsule-containing coatings, provided that the properties
of the microcapsules are appropriate. There are standardised test methods available to evaluate
the characteristics and washfastness of coated textiles. Among the functional textiles, the field
of environmentally friendly biodegradable textiles with microcapsules is still at an early stage of
development. So far, some physicochemical and physical microencapsulation methods using natural
polymers or biodegradable synthetic polymers have been applied to produce environmentally
friendly antimicrobial, anti-inflammatory or fragranced textiles. Standardised test methods for
evaluating the biodegradability of textile materials are available. The stability of biodegradable
microcapsules and the durability of coatings during the use and care of textiles still present several
challenges that offer many opportunities for further research.
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1. Motivation and Research Questions

The aim of this article is to provide a systematic review of recent research in the
field of functional textile coatings based on microcapsules, with a particular focus on
the biodegradability of microcapsules and textile products. More specifically, the review
aims to elucidate the following questions: What are the trends in research publications
on microcapsules for functional textiles? What are the purposes, effects and uses of mi-
croencapsulation in functional textile coatings? Which of the microencapsulation methods
are suitable for applications in functional textiles, for which active ingredients and shell
materials? Which application techniques are used on textiles, with which binders, catalysts,
and pre-treatments of textiles? What is the stability of microcapsules during formation,
application, and textile care, and what standardized testing methods are available? What
proportion of research is focused on biodegradable microcapsules applied to biodegradable
textiles? Which microencapsulation methods and materials are used in such products?
Are the biodegradable microcapsules and formulations sufficiently stable for application
and use on functional textile coatings? To our knowledge, these aspects have not yet been
covered and presented in the review articles to date.

2. Publication Trends in Microencapsulation for Textiles

Industrial applications of microencapsulation were first introduced by the National
Cash Register Company in the late 1950s for the encapsulation of leuco dyes in the man-
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ufacture of carbonless copying paper [1–3]. Since then, microencapsulation has been
continuously improved and adapted for a variety of applications and functional effects. In
addition to the printing industry on paper, microcapsules have also been used for textiles,
pharmaceutical and medical purposes, in cosmetics and food products, agricultural formu-
lations, and in the chemical, biotechnology, photography, electronics, building materials
and waste treatment industries [4–9].

The first ideas for the specific use of microcapsules in textile products were born
about five decades ago and soon developed into an important research field, not only with
the growth of scientific publications, but also with pronounced protection of industrial
intellectual property rights. As a result, the number of patent applications significantly
exceeded the number of scientific articles (Figure 1), with China, Turkey and India being
the leading countries of origin for scientific articles, and Japan, USA and China being the
top countries of origin for patents (Figure 2).
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3. Microcapsules in Functional Textile Products

In the manufacture of textiles, garments and apparel, microencapsulation offers many
opportunities to improve properties or provide entirely new functionalities, leading to
broader usability and higher market value of the products. Scientific and patent literature
reviews on microencapsulation applications in textiles have already been published [12–18].
In this paper, we aim to analyse recent scientific articles and highlight examples of research
results in the field of functional textiles with microcapsules, as summarized in Figure 3,
with a particular focus on the biodegradability of the final products.
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One of the initial microencapsulation applications to achieve innovative effects in tex-
tile processing have been microencapsulated dyes and pigments for special textile printing
and dyeing. Varieties of these include microencapsulated colorants for permanent dyeing
and printing of textiles [19–21], as well as colour changing textiles based on thermochromic
microcapsules [22–25], photochromic dyes [26–29], and electrochromic textiles containing
microencapsulated liquid crystals [30–32].

To achieve durable flame-resistance of textiles, organic or inorganic fire retardants
have been microencapsulated and applied to textile substrates. Microencapsulation has
been used to prevent exudation or sublimation of fire-retardant chemicals, to avoid re-
actions with textile polymers, and/or to overcome the hydrophilicity of the substances.
Products include firefighting and military protective clothing, as well as textiles for auto-
motive and domestic interiors [33–36].

One of the flourishing applications of microencapsulation is functional textiles for ac-
tive thermoregulation, used in insulating textiles, technical clothing, and sportswear. Most
textiles for thermal regulation use phase change materials (PCMs), in which a dynamic heat
exchange process occurs at the melting point temperature. To overcome the practical prob-
lems of solid–liquid phase transitions, PCMs must be microencapsulated and converted
into solid formulations. When a PCM undergoes a solid-to-liquid phase transition, energy
is stored in the form of latent heat at a constant temperature. The accumulated latent heat
energy is released when the PCM re-solidifies, and the transition process is reversible.
Typical organic PCMs are paraffin hydrocarbons or lipids with a melting point close to
body temperature [37–46]. In addition to classical PCMs, photothermal energy conversion
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materials also perform similar functionalities. By absorbing light and converting it into
thermal energy, they are used in light-absorbing thermoregulatory textiles [47–49].

To prevent UV-induced skin problems, some authors have incorporated microen-
capsulated synthetic or natural UV-absorbing compounds into functional UV-protective
fabrics [50–52].

In other technical textiles, microencapsulation has been used to achieve specific
functionalities, such as improved sound absorption [53], superhydrophobicity [54], an-
tifouling [55] and enzymatic bio-sensing [56].

Microencapsulated insecticides [57], acaricides [58], insect repellents [59,60] and
combined bioinsecticide-insect repellent compounds [61,62] have been used in textiles to
reduce volatility, prolong release and decrease washfastness of active compounds from
textile substrates.

Fragranced textiles often contain essential oils, perfumes, or aromas in microencap-
sulated form to either gradually release the active ingredients through permeable shells,
or to protect the cores inside the impermeable microcapsules until they are released by
mechanical pressure or rubbing during product use. Modifications of the shell materials
and binding formulations play an essential role in achieving better washing resistance over
multiple washing cycles and in prolonging olfactory sensations [63–68].

Some aromatic compounds, such as essential oils and their components, not only
provide a pleasant fragrance effect but also offer antimicrobial protection [69]. Being
liquid, volatile and susceptible to oxidation, microencapsulation is required for their
protection and conversion to solid state. The release mechanisms vary from slow diffusion
through the permeable shell to instantaneous release triggered by pressure or melting.
Antimicrobial textile products include hygiene masks, footwear, sportswear, medical
garments and biofunctional materials [70–75].

Bioactive healthcare textiles have similar functionalities. Microcapsules must be
composed of natural and biocompatible materials and approved for direct skin contact.
Examples of medical textiles include microencapsulated antibiotics [76], methyl salicy-
late [77], cannabidiol [78], ozonated vegetable oils [79], lime oil [80] and chitosan [81].
Microcapsules for cosmetotextiles [82] contain skin-caring active ingredients, such as
essential oils and vitamins [83–85].

Functional textiles initially focused only on individual value-adding properties. How-
ever, recent research has targeted combinations of multiple properties and effects, leading
to new multifunctional smart textiles with three or more functionalities in one product,
such as simultaneous aromatic, antimicrobial, UV-protective and superhydrophobic ef-
fects [86–89].

4. Purposes and Effects of Microencapsulation in Functional Textiles

Not all functional textiles need to contain microcapsules. Microencapsulation has
been used as a means to impart finishes and properties to textiles that were not possible
or cost effective with other technologies [18]. Therefore, microencapsulation can be used
beneficially in functional textile products for the three main groups of purposes and
effects [14,15,45,68,69] (Figure 4):

• Permanent protection or separation of a core material for the life of the product. Such
long-life microcapsules provide localized activity by permanently confining the liquid
core within the mechanically resistant shell, as in PCMs for active thermal regulation or
colour-changing textiles with electrochromic, photochromic and thermochromic materials.

• Targeted release of the core under planned conditions that trigger the opening of the
shell. When temporary isolation and rapid, targeted release of active components
from the core is envisaged, microcapsules with impermeable shells burst open by
mechanical pressure, abrasion, melting or thermal decomposition. Until release,
the active components in the microcapsule core remain separated from the reactive
components (leuco dyes and colour developers), converted from a liquid to a solid state
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and protected against evaporation (essential oils) or protected against environmental
influences and oxidation (essential oils, lipids and vitamins).

• Long-lasting, gradual release by diffusion through the permeable microcapsule shell.
This principle is used in long-lasting perfumed textiles, in insect repellent fabrics and
in sustained-release medical and cosmetic textiles.
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and active ingredients.

5. Microencapsulation Methods for Functional Textiles

During the evolution of microencapsulation technologies, a wide range of possible
processes and techniques have been developed and modified to produce microcapsules
with desired materials and target properties. Microcapsule size, morphology, shell and
core materials, release mechanisms, compatibility with other components of the formu-
lation, application technologies to textiles, environmental impact and biodegradability
can be imaginatively defined and thoughtfully planned. Various authors of reviews in
the field of microencapsulation have classified microencapsulation methods in different
ways [81,90–95]. However, not all methods are applicable specifically to textile applications,
and microcapsules have most commonly been produced using one of the methods shown
in Figure 5, with examples analysed and specified in Sections 5.1–5.3.
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5.1. Chemical Microencapsulation Methods for Functional Textiles

Chemical microencapsulation methods take place in emulsions and are based on the
polymerization of monomers around emulsified core droplets to form a solid and durable
polymer wall. Research examples of chemical microencapsulation methods used for textile
functionalization are listed in Table 1. In situ polymerization of aminoaldehyde resins
appears to be the most frequently used microencapsulation method for functional textiles,
particularly to produce scented textiles, thermal protective clothing with PCMs, flame
retardant textiles, photochromic fabrics and antimicrobial textile products. Interfacial
polymerization has been used to prepare polyurea or polyurethane microcapsules for
scented or perfumed textiles, while photopolymerization has been experimentally applied
for multifunctional cotton textiles.

Table 1. Chemical microencapsulation methods for textile functionalization: overview of published examples.

Shell Materials Core Materials Functional Textiles Ref. No.

In situ Polymerization Method

Melamine-formaldehyde
polymer.

Sage, rosemary and lavender
essential oils in isopropyl myristate.

Antimicrobial triclosan. Fire retardant
triphenyl phosphate.

Cotton woven fabrics with
fragrant, antimicrobial, or

flame-retardant functionalisation.
[96]

– Antifungal pharmaceutical
agent terbinafine. Antifungal cotton fabrics. [97]

from prepolymer, with Sodium
lauryl sulphate emulsifier. PCM n-octadecane. Cellulose-polyester fabrics with

improved thermoregulation. [98]

from partially methylated
trimethylolmelamine prepolymer,

with styrene maleic anhydride
copolymer modifier.

Thermochromic PCM composition:
crystal violet lactone dye, bisphenol
A developer, tetradecanol solvent.

Thermal protective clothing. [43]

– Paraffinic PCM Rubitherm®RT27.
Microcapsules incorporated in

melt spinning of polypropylene
textile fibres.

[99]

– Rose essential oil. Fragranced textiles. [100]

with polyacrylic
polymer modifier. Male and female fragrance oils. Fragranced textiles–scented

bow-ties. [101]

– Lavender, rosemary and sage
essential oils. Fragrant cotton textiles. [102]

with sodium salt of styrene maleic
anhydride copolymer and sodium

polyacrylate modifiers.
Thermochromic PCM mixture.

Non-woven functional
thermochromic textiles with

improved thermal regulation.
[48]

modified with multiwall carbon
nanotubes and poly

(3,4-ethylenedioxyoxy-thiophene)
poly (styrene sulphonate).

PCM paraffin with MP 30–32◦C.

3D warp-knitted spacer fabrics
from polyethylene terephthalate

(PET) and elastane, with
improved thermal properties.

[103]

Melamine-urea-formaldehyde
polymer from prepolymer. Tween

20 emulsifier.
Photochromic dyes in ethyl acetate. Cotton fabrics with reversible

photochromic response. [104]

Interfacial Polymerization Method

Polyurea from hexamethylene
diisocyanate and guanidine
carbonate. N-TiO2 particles
loaded on the shell surface.

Citral fragrance.
Fragranced and photocatalytic

bifunctional cotton textiles for air
purification and personal protection.

[105]
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Table 1. Cont.

Shell Materials Core Materials Functional Textiles Ref. No.

Polyurethane–urea polymer from
isocyanate/PEG-400/polyamine. Methyl cedryl ketone fragrance. Fragranced cotton, Polyester and

silk textiles. [63]

from hexamethylene diisocyanate,
polyethylene glycol,

thylenediamine, hydrazine.
Limonene oil. Wool-polyester perfumed Textiles. [106]

Bio-polyurethane composed of
β-cyclodextrin and

4,4′-methylenebis(phenyl
isocyanate).

Neroline perfume. Perfumed polyamide
knitted textiles. [107]

Photopolymerization method

Hexanediol diacrylate/
modified TiO2.

Perfluorooctyltriethoxysilane and
UV absorber Tinuvin grafted on

TiO2 nanoparticles.

Osmanthus fragrance oil.

Multifunctional cotton textiles
with fragranced,

superhydrophobic and UV
protective properties.

[86]

5.1.1. In Situ Polymerization Microencapsulation

In situ polymerization takes place in oil-in-water emulsions, allowing the formation
of microcapsules with hydrophobic core materials immiscible with water. The result is
spherical, reservoir-like microcapsules with smooth, transparent, durable and pressure-
sensitive microcapsule shells (Figure 6).
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(b) microcapsules after activation by pressure and partial core release (research archive, Boštjan Šumiga).

Typical shell materials for in situ polymerization are amine-aldehyde resins (amino-
plasts), such as urea-formaldehyde, melamine-formaldehyde, urea-melamine-formaldehyde,
or resorcinol-modified melamine-formaldehyde synthetic polymers. The synthesis pro-
cesses can either start from monomers, such as urea and formaldehyde or melamine and
formaldehyde, or from prepolymers, such as partially methylated trimethylolmelamine or
hexamethoxymethylolmelamine, which are easier to control [108,109].

Since polymerization of all materials for the microcapsule shell occurs exclusively
in the continuous water phase and on the side of the continuous phase at the interface
formed by the dispersed core material and the continuous phase, all shell monomers or
prepolymers must be water soluble. Polymerization initially produces prepolymers of
relatively low molecular weight that remain soluble in the continuous phase, but as the
molecular weight of the prepolymer increases, the polymers deposit on the surface of the
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dispersed cores in the emulsion. Polymerization continues at the surface of the droplets,
and a solid shell is formed as crosslinking occurs. The separation and deposition process
by which the microcapsule shell is formed largely determines the encapsulation efficiency
and shell morphology and can be controlled by changing the pH and temperature, by
the amine and aldehyde type and molar ratio and by the type and amount of emulsifier
used [110].

Under ideal conditions, all of the shell material precipitates and distributes evenly
over the surfaces of the hydrophobic cores in the emulsion. To achieve better process
control and improved mechanical properties of the microcapsules, emulsifiers/modifiers
must be added to initially improve emulsification and later ensure that polymerization
develops only on the surface of the emulsified microcapsule cores and not throughout the
whole aqueous phase [109]. Examples of such emulsifiers/modifiers include styrene-maleic
anhydride polymer [43,48,100,109] and polyacrylic acid [96].

Aminoaldehyde microcapsules have excellent technological properties, are durable and re-
sistant to chemical and physical agents. However, they have two important disadvantages—poor
environmental degradability and the release of formaldehyde. Hydrolytic degradation of urea-
formaldehyde polymers leads to significant weakening of resin bonds and is a source of
formaldehyde emissions [111,112]. This is also particularly problematic in textile applications,
as the limits for maximum allowable formaldehyde concentrations in various products, in-
cluding textiles, have been lowered in recent decades. To reduce the formaldehyde content,
formaldehyde residues can be removed from the suspension of microcapsules at the end of
the in situ process by adding scavengers such as urea, melamine, ammonia or ammonium
chloride [109,111,113,114].

5.1.2. Interfacial Polymerization Microencapsulation

In microencapsulation by interfacial polymerization, one of the monomers is dissolved
in the aqueous phase and the other in an organic lipophilic solvent of the emulsion. Both
monomers react at the droplet interface to form a polymer membrane—the microcapsule
shell. The active core material can be oil-soluble or water-soluble, so the oil-in-water or
water-in-oil type emulsion must be selected accordingly. Four main types of shell polymers
have been developed and used in microencapsulation by interfacial polymerization, con-
sisting of polyamides (reaction of diamines and diacid chlorides) (Figure 7), polyurethanes
(reaction of diisocyanates with diols), polyureas (reaction of diamines with diisocyanates)
and polyesters (reaction between diacid chlorides and diols). The formation of a polymer
shell at an interface involves complex mechanisms that are not yet fully understood. The re-
action begins at the liquid interface, and as the shell initially forms, the reaction site moves.
As the oligomers in the dispersed droplet become largely insoluble, the polymer precipi-
tates near to the interface and reservoir-type microcapsules form. A further comprehensive
analysis of both the chemical and physical processes involved in microencapsulation by
interfacial polymerization and the implications for membrane formation and structure was
published in [115]. In microcapsules for textile applications, shells have been reported of
polyurea [105], polyurethane urea [63,106] and bio-polyurethane [107].

5.2. Physico-Chemical Microencapsulation Methods for Functional Textiles

Physico-chemical microencapsulation methods for textile applications (Table 2) consist
of simple and complex coacervation processes, and of molecular inclusion with cyclodex-
trins. Their important advantage is that environmentally friendly shell materials can be
used, often of natural origin, that are safer for direct skin contact and textile degrada-
tion after use. However, the disadvantage is lower durability and resistance to physical
and chemical agents in the processes of microcapsule application, washing and use of
functional textiles.
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Table 2. Physico-chemical microencapsulation methods used for textile functionalization—examples of processes
and materials.

Shell Materials Core Materials Functional Textile Ref. No.

Simple Coacervation

Chitosan. Cinnamon essential oil. Antimicrobial woven cotton fabrics. [70]

Ethyl cellulose. Photochromic dyes in ethyl acetate. Cotton fabrics with reversible
photochromic response. [104]

Corn starch, formaldehyde cross-linked. Aloe vera oil. Cotton nonwoven bandages for
treatment of burned skin. [116]

Gum acacia, formaldehyde cross-linked. Eucalyptus oil and cedarwood oil as
insect repellent. Insect repelling woven fabrics. [117]

Complex Coacervation

Gelatin and gum Arabic,
glutaraldehyde cross-linked. Citronella essential oil. Mosquito repellent cotton fabrics. [60]

– Methyl salicylate pharmaceutical. Cotton and polyamide Jersey knitted
pharmaceutical textiles. [77]

– Propolis emulsion in rice oil. Antimicrobial cotton textiles. [118]

Chitosan-gum Arabic,
tannic acid cross-linked. Limonene and vanillin. Antibacterial cotton textiles. [73]

Gelatine and sodium alginate,
glutaraldehyde cross-linked.

Hydrophilic bentonite nano-particles
doped on shell.

n-eicosane PCM. Cotton textiles with improved thermal
stability and flame-retardant properties. [119]

Silk fibroin andchitosan. n-eicosane PCM. Thermoregulated textiles. [120]

Molecular Inclusion

Epichlorohydrin modified
β-cyclodextrin. Indigo dye and lavender essential oil. Bifunctional coloured and fragranced

cotton textiles. [121]

β-cyclodextrin. Citronella oil. Woven cotton and spun polyester
textiles with insect repellent activity. [122]

Hyper cross-linked β-cyclodextrins. Melatonin sleep hormone. Knitted cotton biofunctional fabrics. [123]



Coatings 2021, 11, 1371 10 of 30

5.2.1. Coacervation

Coacervation microencapsulation processes occur in colloidal systems in which macro-
molecular, colloid-rich coacervate droplets surround dispersed microcapsule cores and form
viscous microcapsule shells that are solidified with crosslinking agents (Figures 8 and 9). In
practice, water-insoluble actives are emulsified into the continuous aqueous phase containing
a dissolved macromolecular colloid to form an oil-in-water emulsion. The coacervation
process is induced by controlled modification of parameters such as pH, ionic strength,
temperature or solubility. Shell formation is driven by the surface tension difference be-
tween the coacervate phase, the water and the hydrophobic material. Gelation is achieved
by lowering the temperature of the reaction mixture below the gelling point of the gellable
hydrocolloid. Permanent hardening of the microcapsule shells is achieved by cross-linking
and formation of new covalent bonds or by non-covalent hardening by hydrogen bonds
formed between molecules. Often both types of processes occur simultaneously or suc-
cessively. Among the cross-linking agents, aldehydes (formaldehyde, glutaraldehyde) are
mostly used.
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Figure 9. Complex coacervation microcapsules with exclusively natural ingredients: core of citronella
oil and shells of gelatine and gum Arabic cross-linked with tannin (authors’ archive).

Based on the polymer-colloid systems involved, coacervation processes are divided
into two subgroups: (a) simple coacervation process, when a single polymer is involved
and coacervates are formed due to reduced hydration by the addition of a salt or desol-
vation liquid, such as alcohol, and (b) complex coacervation, when two or more polymer
colloids with opposite charges are used to form shells. Common pairs are proteins and
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polysaccharides, such as gelatine and gum Arabic. The ionic interactions between them
lead to coacervate formation and phase separation. A comprehensive analysis of the coac-
ervation processes, their mechanisms, process parameters, materials and applications has
been described in [124].

5.2.2. Molecular Inclusion with Cyclodextrins

Cyclodextrins are cyclic oligosaccharides containing at least 6 D-(+)-glucopyranose
units linked by α-(1,4)-glucoside bonds. With lipophilic inner cavities and hydrophilic
outer surfaces, they can interact with a variety of guest molecules to form non-covalent
inclusion complexes that provide protection and improve solubility, bioavailability and
safety of active compounds. Natural α-, β- and γ-cyclodextrins (with 6, 7 and 8 glucose
units, respectively) differ in ring size and solubility, and are most frequently used [125,126].

Direct interaction between cyclodextrin complexes and fibres has been reported in
the functionalization of textiles. The use of poly(carboxylic) acids allows some fixation
of cyclodextrin complexes to fibres. An example is the grafting of β-cyclodextrin onto
hydroxyl groups of cellulose using butane-1,2,3,4-tetracarboxylic acid as crosslinking agent
and sodium hypophosphite as catalyst [122].

5.3. Physical Microencapsulation Methods for Functional Textiles

A wide range of physical microencapsulation methods using natural shell materi-
als have been developed to produce microcapsules for applications in pharmaceutical,
food, cosmetic and detergent formulations [4,127–129]. For textiles, the range of physi-
cal microencapsulation methods is limited and restricted to a few methods, as shown in
Table 3, mainly due to the higher requirements in terms of durability, mechanical strength
and resistance to washing. In both spray drying and emulsification/solvent evaporation
methods, the wall materials are dissolved in a solvent, the core materials are emulsified,
and the active ingredient is encapsulated by the shell material after solvent evaporation.
Simple emulsions or multiple reverse-phase solvent evaporation methods can be used. An
advantage of physical methods is the possibility to use biodegradable materials such as
acacia gum, chitosan, ethyl cellulose and polylactic acid.

Table 3. Physical microencapsulation methods used for textile functionalization—examples of processes and materials.

Shell Materials Core Materials Functional Textile Ref. No.

Spray Drying

Acacia gum. Citronella oil. Nonwoven cosmetic textiles. [130]
Chitosan. Vanillin. Fragranced cotton fabric. [131]

Emulsification and Solvent Evaporation

Soy lecithin and cholesterol. Reactive dye vinylsulfone
azonaphthalene. Wool textile dyeing. [19]

Poly-lactic acid.
Phase change material capric acid.

Thermal conductivity enhancer
carbon nanotubes.

3D polyester knitted fabric with
enhanced thermal properties. [39]

Ethyl cellulose. Immortelle essential oil. Cosmetic and medical textiles. [132]

– Antifungal pharmaceuticals
terbinafine and ketoconazole. Antifungal cotton fabrics. [133]

6. Microcapsule Coating Formulations and Technologies
6.1. Formulation Composition

Microcapsules have to be formulated for applications on woven or non-woven tex-
tiles without significantly altering the feel or colour of the textile products. Formulation
additives typically include binders, crosslinking agents, organic or inorganic pigments and
fillers, defoamers and/or other surfactants and viscosity control agents/thickeners.
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Binders play a crucial role in microcapsule formulations for textiles. They largely
determine the quality, durability and washability of textile materials containing microen-
capsulated ingredients. Typically, binders are selected from the following groups:

• Synthetic latexes, such as polyacrylate latexes, styrene-butadiene, polyvinyl-acetate,
ethylene-vinyl acetate copolymers [134–137];

• Synthetic resins, such as urea-and melamine-formaldehyde resins, dimethylol ethylene
urea, dimethylol dihydroxy ethylene urea, dimethylol propylene urea, polyurethane
and epoxy resins, vinyl acetate resins [138–140];

• Synthetic rubbers, such as polyurethanes, nitrile and chloroprene rubbers [66,139,141];
• Silicones [89,140];
• Citric acid (CA) or 1,2,3,4-butanetetracarboxylic acid (BTCA) and catalysts (monobasic

sodium phosphate monohydrate, sodium hypophosphite) [73,116,131,135,142,143];
• Chitosan gel [144].

The use of acrylic or polyurethane binders has predominated among other binders in
the finishing of textiles with microcapsules in the last 5 years, but it must be emphasised that
cotton finishing or so-called chemical grafting using CA or BTCA as crosslinker between mi-
crocapsule and cotton fibre and sodium hypophosphite as a catalyst [73,116,131,135,142,143]
is on the rise due to the increasing use of biodegradable polymers (chitosan alone or chitosan-
gum Arabic or gelatine-gum Arabic) as shell-forming materials in microcapsule production.
Increased environmental awareness promoted the use of sustainable and biodegradable
polymers in the finishing of textiles with microcapsules and the production of functional
textiles. The advantage of using chemical grafting instead of polymeric binders is the
flexibility and breathability of the textiles, which are retained after application. In contrast,
polymeric binders form a binder layer during curing which can significantly reduce the air
permeability of the fabric, change the tensile strength of the fabric, increase stiffness and
reduce softness [73].

6.2. Durability of Coatings

The design of functional textiles for single use does not necessarily require the study of
all types of durability to the same extent as for textiles for long-term use. When designing
functional textiles with microcapsules, the performance of various basic resistances, such
as resistance to rubbing, light, washing and wet- and dry cleaning, which are standardised
in the textile industry, should be considered.

As mentioned above, the application of microcapsules to textiles requires the addition
of a binder, as a microcapsule shell is not able to interact strongly with functional groups of
textile fibres. An exception is the chemical grafting of cotton with citric acid, where citric
acid is used as a non-toxic crosslinker to covalently bind the microcapsule wall material to
hydroxyl groups of cotton via ester bonds [73,131]. During curing, the binder forms a thin,
elastic and transparent binder layer on the textile surface in which the microcapsules are
enclosed. Therefore, the adhesion between the binder layer and the textile substrate plays
a crucial role.

The durability of the microcapsules and the maintenance of the functionality of the
textile during its lifetime depend on the resistance of the binder layer to washing, dry and
wet cleaning, rubbing and light. It should be emphasised that all washfastness properties
in textiles are standardised by the standards ISO 105-C01 [131,139], ISO 105-C10 [141], ISO
105-C06, ISO 6330 or AATCC TM61 [77,89,121,136,145]. The standard ISO 105-C01 is no
longer valid anymore and is replaced by ISO 105-C10. The use of non-standardised test
methods does not provide reliable insight into the actual behaviour of a functional textile
during the care and wearing process but can provide a rough estimate.

When functional textiles are directly involved in a domestic [70] or industrial washing,
wet cleaning and dry-cleaning process [28], a more realistic assessment of the durability of
the textile can be achieved as the textile is exposed to real-life care conditions (detergent,
mechanical action, abrasion, temperature, time and solvent). Moreover, the washing or
cleaning conditions are standardised by the machine manufacturer.
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Figure 10 shows the SEM images of a polyester fabric coated with photochromic
microcapsules before and after washing, wet cleaning and dry cleaning. It can be clearly
seen that the cleaning process strongly affected the adhesion between the binder layer, in
which the microcapsules were enclosed, and the polyester fibres, resulting in the loss of the
functional coating.
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6.3. Coating Techniques

Various techniques can be used to apply microcapsules to textiles. Patents and pub-
lished articles describe the incorporation of microencapsulated compounds onto textiles
using the following application techniques:

• coating with an air knife or rod coater [146,147];
• impregnation or immersion [28,142,148,149];
• exhaustion [150];
• printing techniques, such as screen-, photographic-, electrostatic-, pressure-transfer,

thermal-transfer and inkjet printing [26,96,101,151];
• spraying on the surface of textiles, [90,152,153].

Instead of coating techniques, some researchers developed and used other technologi-
cal solutions for incorporating microcapsules into textile products, such as:

• Inclusion of microcapsules into the textile fibres during the spinning process, using
polyester, nylon, polypropylene or modacryl fibre material [154–158];

• Incorporation into polymer foams, coatings and multilayer composites that are placed
or inserted into selected parts of textile clothing or footwear [159–164].
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7. Biodegradable Functional Textiles Containing Microcapsules
7.1. Biodegradability of Synthetic Materials

In general, high molecular weight synthetic polymers such as urea-formaldehyde
resins, nylon, polyvinyl chloride, polystyrene and polyethylene are classified as non-
biodegradable plastics [165]. However, some microbial research has also addressed the
question of whether and to what extent microorganisms can degrade plastics in the envi-
ronment and has focused on biodegradation and biotreatment of plastic wastes. A recent
review paper by Danso et al. [166] summarized current knowledge on microbial plas-
tic degradation and indicated that microorganisms and enzymes can act on some high
molecular weight polymers of polyethylene terephthalate and ester-based polyurethane
at moderate turnover rates, while no efficient enzymes are known for the high molecular
weight polymers of polystyrene, polyamide, polyvinyl chloride, polypropylene, ether-
based polyurethane and polyethylene.

Although, to our knowledge, no biodegradability studies have been published specifi-
cally for aminoaldehyde microcapsules prepared by in situ polymerization or for microcap-
sules synthesised by interfacial polymerization with polyamide, polyurethane, polyurea or
polyester shells, some publications described biodegradability studies conducted specifi-
cally with these synthetic polymeric materials in the natural environment or under con-
trolled laboratory conditions. The following literature review provides examples of research
studies on the biodegradability of generally non-biodegradable synthetic polymers.

7.1.1. Melamine-Formaldehyde Resins

Otake et al. [165] studied the biodegradation of polymers buried in soil for over
32 years. Remarkable degradation was found only for thin films of low-density polyethy-
lene in direct contact with soil, while no evidence of biodegradation was found for
polystyrene, polyvinyl chloride and urea-formaldehyde resin. However, from the wastew-
ater of an aminoplast industrial plant, El Sayed et al. [167] isolated a novel bacterial strain
Micrococcus sp. MF-1 that was able to use melamine-formaldehyde resin as its main carbon
and nitrogen source. Melamine, cyanuric acid and biuret were detected as intermediate
metabolites in the filtrate of the culture. Biodegradation of the resin proceeded via succes-
sive deamination reactions of melamine to cyanuric acid, which was hydrolysed to biuret
and finally to NH3 and CO2.

7.1.2. Polyurethane and Polyester-Polyurethane

Polyurethane, especially polyester-polyurethane, appears to be more susceptible to
microbial infestation. Nakajima-Kambe et al. [168] analysed reports on the degradation of
polyester-polyurethane by microorganisms and fungi and concluded that biodegradation
occurs mainly through the hydrolysis of ester bonds by esterases.

Ibrahim et al. [169] reported that out of 70 fungal isolates recovered from soils, wall
paints and plastic wastes from different habitats, 35 isolates showed potential to degrade
polyester polyurethane. Six of these isolates (Fusarium solani, Alternaria solani, Spicaria spp.,
Aspergillus fumigatus, Aspergillus terreus and Aspergillus flavus) grew on basal salt media
amended with polyester-polyurethane as the sole carbon source. Maximum degradation
activity was achieved by the isolate Aspergillus flavus, which caused a weight loss of 94% of
the polyester-polyurethane pieces.

Khan et al. [170] isolated and characterised polyester-polyurethane degrading fungi
from the soil of a general municipal solid waste landfill. Among them, a novel polyester-
polyurethane-degrading fungus was isolated and identified as Aspergillus tubingensis.
Khan et al. [171] also investigated the ability of the fungus Aspergillus flavus G10, isolated
from the gut of the common cricket Gryllus bimaculatus, to biodegrade polyurethane. The
biodegradation was maximal in fungus cultured on a malt extract medium.

Brunner et al. [172] reported on the ability of some fungal strains to degrade plastics.
Three litter-saprotrophic fungi found on floating plastic waste in the shoreline of a lake,
Cladosporium cladosporioides, Xepiculopsis graminea and Penicillium griseofulvum, and the
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plant pathogen Leptosphaeria sp. were able to degrade polyurethane. In addition, two other
litter-saprotrophic fungi, Agaricus bisporus and Marasmius oreades, which were not isolated
from floating plastic waste, also showed the ability to degrade polyurethane.

Similarly, Russel et al. [173] screened numerous endophytic fungi for their ability to
degrade polyester-polyurethane. While several isolates showed the ability to efficiently
degrade polyester-polyurethane in both solid and liquid suspensions, particularly strong
activity was observed in isolates of the genus Pestalotiopsis. Two isolates of the species
Pestalotiopsis microspora were uniquely capable of growing on polyester polyurethane as
a sole carbon source under both aerobic and anaerobic conditions and were found to be
promising sources of biodiversity useful for bioremediation.

7.1.3. Nylon/Polyamides

The biodegradation of nylon membranes by lignin-degrading fungi was studied by
Deguchi et al. [174]. The white rot fungal strain IZU-154 oxidatively degraded nylon-66
membrane under ligninolytic conditions. The nylon-degrading activity was closely related
to the ligninolytic activity of the fungus.

Negoro [175] reviewed the degradation of nylon oligomers and reported that two strains
that originally lacked metabolic activity for nylon oligomers, namely Flavobacterium sp. KI725
and Pseudomonas aeruginosa PAO1 developed the ability to degrade nylon oligomers as
xenobiotic compounds by selective cultivation with nylon oligomers as the sole carbon and
nitrogen source.

According to Sudhakar et al. [176], the marine bacteria Bacillus cereus, Bacillus sphericus,
Vibrio furnisii and Brevundimonas vesicularis were shown to degrade nylon 6 and 66 in a
mineral salt medium, with the polymer being the sole carbon source.

7.1.4. Polyesters

Kim and Rhee [177] published a review on fungal degradation of microbial and synthetic
polyesters and discussed the ecological significance and contribution of fungi in the biological
recycling of polymeric waste materials in the biosphere. In general, aromatic polyesters are
more resistant to microbial attack. In contrast, due to their potentially hydrolysable ester bonds,
most aliphatic polyesters can be mineralized by several aerobic and anaerobic microorganisms
that are widely distributed in nature. To obtain useful biomaterials and reduce the impact
of environmental pollution caused by non-degradable polymers, biodegradable polyesters
have been developed, such as polyhydroxyalkanoates, poly(ε-caprolactone), poly(L-lactide),
aliphatic and aromatic polyalkylene dicarboxylic acids.

While aromatic polyesters, such as poly(ethylene terephthalate), have excellent material
properties but are resistant to microbial attack, many biodegradable aliphatic polyesters lack
technological properties important for the application. Aliphatic-aromatic copolyesters have
been developed to combine good material properties with biodegradability. Müller et al. [178]
reviewed the attempts to combine aromatic and aliphatic structures in biodegradable polyester
plastics and evaluated the degradation behaviour and environmental safety of biodegradable
polyesters containing aromatic components.

Based on the results of these studies, it can be assumed that synthetic microcapsule
shells, such as those made from amino resins, polyurethane or polyamide, are generally
not readily biodegradable in the environment, but can be biodegraded by selected and
adapted strains of microorganisms and fungi.

7.2. Biodegradable Polymers

The rapid development of the textile industry and the use of non-biodegradable and
non-biocompatible materials have had a negative impact on the environment. Due to
the negative impact on the environment, biodegradable polymeric materials have been
increasingly used in the last decade [179].

The rate and degree of biodegradation of fibre-forming polymers depend on several
factors, of which the following are important: properties of fibre-forming polymers (chemi-
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cal structure, molecular mass, degree of polymerization, crystallinity, degree of orientation
and the hydrophilicity/hydrophobicity of textile materials), environment (presence of oxy-
gen, temperature, humidity, pH, light and the presence of metals and salts) and microbial
flora in a given environment, with appropriate secreted enzymes for the degradation of
polymers [180].

Biodegradable polymers can be of natural or synthetic origin. Their heteroatoms in
the main chain are potentially susceptible to hydrolytic cleavage of ester (–COO–), amide
(–CONH–) or ether (–O–) bonds. Natural biodegradable polysaccharides include cellulose,
chitin, chitosan, amylose, sodium alginate, lignin, etc. Other biodegradable polymers
include amide-containing polymers (polypeptides, proteins and thermal polyaspartate),
biodegradable polyurethane and polyesters such as polycaprolactone (PCL), polylactic acid
(PLA), poly(3-hydroxybutyrate), polyhydroxyalkanoates (PHAs) and their corresponding
copolymers [181].

Polysaccharides, especially cellulose, are widely used in the textile industry due to
their nontoxicity, biodegradability and biocompatibility [182]. Cotton, a natural cellulose
fibre, is the most used material. Due to its specific structure, cotton becomes stronger when
it is wet. This makes the material suitable for textiles that need to be washed frequently.
Due to the numerous functional groups on the chains, the structure can be chemically
modified to improve the chemical, physical and biological properties [183].

7.3. Biodegradability Testing

From the large number of standards available for testing the biodegradability of
various materials, the following standardised test methods have been developed and used
specifically for evaluating the biodegradability of textile materials:

• 21701:2019 Textiles—Test method for accelerated hydrolysis of textile materials and
biodegradation under controlled composting conditions of the resulting hydrolysate,

• ISO 11721-1:2001 Textiles—Determination of resistance of cellulose-containing textiles
to micro-organisms—Soil burial test—Part 1: Assessment of rot-retardant finishing,

• ISO 11721-2:2003 Textiles—Determination of the resistance of cellulose-containing tex-
tiles to micro-organisms—Soil burial test—Part 2: Identification of long-term resistance
of a rot retardant finish,

• AATCC TM30: 2013 Antifungal activity, assessment on textile materials: Mildew and
rot resistance of textile materials, Test 1 soil burial,

• ASTM D 5988-18 Standard test method for determining aerobic biodegradation of
plastic materials in soil)

The soil burial test has been the most used in published articles [180,184–190]. In this
test, the sample is buried in the soil for a certain time under specific conditions (temperature,
humidity, pH) specified in the standard. After the specified burial time, the samples are
removed from the soil, rinsed and dried. The burial time is specified in the standards with
the loss of the maximum tensile strength of the tested sample, which can be 80% or 90%
depending on the standard. Figure 11 shows the biodegradation of chemically bleached
cotton fabric using the burial test (ISO 11721-1:2001), where the biodegradation of the fibres
is visually apparent and accelerated by increasing the burial time.

During the biodegradation process, many changes occur, and the textile material ex-
hibits significant optical and other morphological changes. In the study of textile biodegra-
dation, the colour change of buried textile material is evaluated spectrophotometrically
by calculating the colour difference between the unburied and buried samples, surface
changes of fabrics are also characterised by optical microscopy, morphological changes of fi-
bres are characterised by scanning electron microscopy (SEM), changes in fibre crystallinity
and internal structure by X-ray diffraction (XRD), the chemical structure of the textile
material or its functional groups by Fourier transform infrared spectroscopy (FTIR), the
change in thermal stability of the buried textile material by thermal gravimet-ric analysis
(TGA) and mechanical changes by a mechanical test that determines the loss of breaking
strength of the textile material [185,187–191].
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Previous studies on the biodegradation of a cotton fabric using the soil burial test
have shown that biodegradation is very rapid in untreated cotton, whereas biodegradation
in treated cotton depends on the finishing treatment [184,191]. The crosslinked finishes
on cotton fabrics showed lower biodegradation than the non-crosslinked finishes [184].
The results of breaking strength indicated that finished cotton textiles degraded more
slowly than raw cotton fabrics. The prolongation of time depended on the finishing
treatment [191]. Fabric construction parameters (weave, linear density and thickness)
were found to affect biodegradability. Fabrics with looser weave and lower linear density
showed greater loss of tensile strength than fabrics with denser weave and higher linear
density. Thinner fabric degraded faster than thicker fabric [177]. The hairiness of the fabric
surface and the relative tightness of the yarn twist had a major effect on the speed of
cellulolytic attack [187]. The inhomogeneity of textile fibres (amorphous/crystalline region,
surface porosity, fibre diameter, some damages, etc.) could be the cause of the uneven
biodegradation of the fabric [188]. The degradation of cotton resulted in a change in fabric
colour [186,187,189,190], which was closely related to the burial time and finishing. The
degree of polymerization of the cotton fabric decreased with increasing burial time. The
intensity of the bands at 1640 and 1548 cm−1 in the FTIR analysis corresponded to the
amide I and amide II groups as a result of protein production by microbial growth on the
fibres [189,190]. The increase in temperature and moisture content in the soil accelerated
the biodegradation process as the microorganisms in the soil became more active [180,187].

7.4. Biodegradable Microcapsules for Functional Textiles

One of the major challenges in the functionalization of textile materials is the produc-
tion of biodegradable textiles containing biodegradable microcapsules. The extent to which
this area remains unexplored can be seen in Figure 12, which shows the number of scientific
articles and patents on microencapsulation for biodegradable and eco-friendly textiles.

Compared to Figure 1, in 2020, for example, biodegradable microcapsules were men-
tioned in one out of eighteen articles and one out of twelve patents on the topic of mi-
croencapsulation for textiles. In the mid 1990s, a scientific article first mentioned that the
use of microcapsules would contribute to the biodegradability of medical textiles in the
future [179]. In recent years, the interest of scientists in the development of biodegrad-
able textiles containing microcapsules has increased significantly, especially to produce
antimicrobial microcapsules, dominated by essential oils and plant extracts.

Microcapsules made from biodegradable materials have been applied to natural
textile materials, mostly cotton [19,73,180]. The choice of techniques for the preparation of
biodegradable microcapsules is even more limited since chemical polymerization methods
are not applicable. Therefore, physico-chemical and physical methods have been used
(Table 4). Among the biodegradable polymers used to form the microcapsule shell, chitosan,
gum Arabic and alginate predominate, while polylactic acid, soy lecithin, cholesterol and
β-cyclodextrin are used to a lesser extent.



Coatings 2021, 11, 1371 18 of 30Coatings 2021, 11, x FOR PEER REVIEW 18 of 30 
 

 

 
Figure 12. Trends in the number of the scientific articles in the Web of Science database [10] and 
patent documents in Espacenet database [11] on the topic of microencapsulation for biodegradable 
and environmentally friendly textiles. Search query (Web of science): (microcapsule* OR microen-
capsulat*) AND (textile* OR cloth OR fabric OR garment*) AND (biodegrada* OR eco-friend* OR 
green OR biopolymer* OR biocompatib*). Search query (Espacenet): microcapsule* AND textile* 
environment*. 

Compared to Figure 1, in 2020, for example, biodegradable microcapsules were men-
tioned in one out of eighteen articles and one out of twelve patents on the topic of micro-
encapsulation for textiles. In the mid 1990s, a scientific article first mentioned that the use 
of microcapsules would contribute to the biodegradability of medical textiles in the future 
[179]. In recent years, the interest of scientists in the development of biodegradable textiles 
containing microcapsules has increased significantly, especially to produce antimicrobial 
microcapsules, dominated by essential oils and plant extracts. 

Microcapsules made from biodegradable materials have been applied to natural tex-
tile materials, mostly cotton [19,73,180]. The choice of techniques for the preparation of 
biodegradable microcapsules is even more limited since chemical polymerization meth-
ods are not applicable. Therefore, physico-chemical and physical methods have been used 
(Table 4). Among the biodegradable polymers used to form the microcapsule shell, chi-
tosan, gum Arabic and alginate predominate, while polylactic acid, soy lecithin, choles-
terol and β-cyclodextrin are used to a lesser extent. 

The degradability of microcapsule cores depends on the ingredients used. An over-
view of the biodegradable microcapsules in Table 4 shows that the core material is usually 
composed of natural compounds which, through controlled release from the microcap-
sule into the environment, impart specific functional activity to the textile, such as antimi-
crobial, anti-inflammatory, insect repellent or fragrance properties. Essential oils such as 
basil, cinnamon, clove, citronella limonene, lavender and vanillin predominate among 
core materials, along with other natural ingredients such as rice oil and wintergreen oil 
(methyl salicylate), propolis and capric acid as a saturated fatty acid. Essential oils are 
natural, volatile and aromatic liquids, extracted mainly from plants, and are easily de-
gradable in the environment under suitable conditions, namely light, heat and atmos-
pheric oxygen [192]. 

Cotton fabric as a biodegradable textile is commonly used as a textile material for 
microcapsule application. The most commonly used method for applying biodegradable 

Figure 12. Trends in the number of the scientific articles in the Web of Science database [10] and patent documents in
Espacenet database [11] on the topic of microencapsulation for biodegradable and environmentally friendly textiles. Search
query (Web of science): (microcapsule* OR microencapsulat*) AND (textile* OR cloth OR fabric OR garment*) AND
(biodegrada* OR eco-friend* OR green OR biopolymer* OR biocompatib*). Search query (Espacenet): microcapsule* AND
textile* environment*.

The degradability of microcapsule cores depends on the ingredients used. An overview
of the biodegradable microcapsules in Table 4 shows that the core material is usually com-
posed of natural compounds which, through controlled release from the microcapsule into
the environment, impart specific functional activity to the textile, such as antimicrobial,
anti-inflammatory, insect repellent or fragrance properties. Essential oils such as basil,
cinnamon, clove, citronella limonene, lavender and vanillin predominate among core
materials, along with other natural ingredients such as rice oil and wintergreen oil (methyl
salicylate), propolis and capric acid as a saturated fatty acid. Essential oils are natural,
volatile and aromatic liquids, extracted mainly from plants, and are easily degradable in the
environment under suitable conditions, namely light, heat and atmospheric oxygen [192].

Cotton fabric as a biodegradable textile is commonly used as a textile material for
microcapsule application. The most commonly used method for applying biodegradable
microcapsules to textiles is the pad-dry-cure or pad-dry process, although screen printing
may also be used. The type of coating technique can affect the rate of biodegradation, par-
ticularly if the application of the microcapsules and other chemicals required for adhesion
of microcapsules to fibres increases the hydrophilicity of the textile. Hydrophilic textile
surface is more susceptible to moisture absorption, which in turn accelerates the rate of
textile biodegradation by microorganisms and fungi. Padding is usually accomplished
by immersing the textile in a padding bath containing a suspension of microcapsules of
varying concentrations with no or added binders to ensure adhesion of the microcapsules
to the fibre. The duration of the immersion can last from one to several minutes, depending
on the characteristics of the textile (linear density, hydrophilicity and thickness) and its
ability to absorb the padding bath. The fabric wet pick-up is controlled by the pressure of
the rollers during squeezing of the padded fabric.

In recent years, synthetic additives in the padding bath (acrylate binders or even
less environmentally friendly dimethylol dihidroxyethlylene urea, wetting and softening
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agents) have been successfully replaced by more promising green products based on chem-
ical grafting of cellulose with citric acid as crosslinker and monosodium phosphate as
catalyst. Microbial degradation of acrylic polymers can be carried out for some types of
polymers and to some extent. The biodegradation of acrylic polymers depends on the
structure of the polymer, such as C–C backbone length, side groups, quaternary carbons
and molecular organisation (linear, branched or cross-linked), as well as on the microor-
ganisms and the environment in which the process is carried out, and the techniques used
to quantify acrylic polymers degradation. Other characteristics such as the purity of the
product and the degree of hydrolysis also influence the acrylic polymer biodegradabil-
ity assessment [193]. On the other hand, dimethylol dihidroxyethylene urea reduces the
hydrophilicity of the cotton fabric due to a cross-linking reaction that takes place in the
amorphous regions of the fibre. The finished cotton is less wettable and can absorb less
moisture from the environment, which is one of the factors that accelerate biodegrada-
tion. In addition, dimethylol dihidroxyethylene urea impairs the growth conditions for
microorganisms and thus delays the biodegradation of cotton fabric [190]. It should be
emphasised that there is no clear limit to what is biodegradable and what is not, as some of
the polymers cannot be degraded in natural environments, sludge or landfills, but only in a
specific artificial environment by selected microorganisms and fungi, as already discussed
in chapter 7.1.

In practice, achieving the biodegradability of products often results in diminished or
limited technological performance of products. Therefore, functionalized textiles containing
biodegradable microcapsules should be tested for their resistance to washing, rubbing and
light, especially if the functional textiles are intended for daily use. Although few studies
tested the wash resistance of functionalized textiles, the test methods used were poorly
described or even not standardised. Future work should focus on testing various durability
properties of functional textiles, including those with biodegradable microcapsules, using
only standardised methods.

In the available literature, there are only a limited number of studies [194–196] that
focussed on and specifically investigated the biodegradation of microcapsules. Since there
is no standardised test method to evaluate the biodegradability of microcapsules, the next
step would be to develop guidelines for testing or to create a new standard.

Table 4. Biodegradable microcapsules for functionalization of biodegradable textiles.

Shell Materials Core Materials
Coating

Composition
Additives

Application
Method Functional Textile Ref. No.

Simple Coacervation

Chitosan.

Cinnamon
essential oil.

Dimethylol
dihydroxy

ethylene urea.
Pad-pre-dry-cure. Antimicrobial cotton

woven fabric. [70]

Cinnamon and clove
essential oil.

Citric acid,
monosodium
phosphate.

Immersion-dry-
cure.

Antimicrobial
cotton fabric. [192]

Mypro gum or
sodium
alginate.

Extract of
Pelargonium hortorum.

Citric acid or
commercial binder Pad-dry-cure.

Antimicrobial and
anti-inflammatory

cotton woven fabric.
[145]
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Table 4. Cont.

Shell Materials Core Materials
Coating

Composition
Additives

Application
Method Functional Textile Ref. No.

Complex Coacervation

Chitosan,
gum Arabic.

Vanillin or
limonene

essential oil.

Citric acid
and sodium
phosphate
monobasic

monohydrate.

Immersion-dry-cure. Antimicrobial
cotton fabric. [73]

Lavender
essential oil.

Citric acid
and sodium
phosphate
monobasic

monohydrate.

Pad-dry. Antimicrobial
cotton fabric. [135]

Gelatine,
gum Arabic

Propolis, rice oil. Acrylate binder. Pad-dry. Antimicrobial
cotton fabric. [118]

Methyl salicylate.
Citric acid

and sodium
hypophosphite.

Pad-dry-cure.
Anti-inflammatory

and analgesic cotton
and polyamide knitwear.

[77]

Citronella
essential oil. – Pad-dry.

Insect/Mosquito
repellent cotton and

polyester fabric.
[197]

Gelatine,
alginate.

C. aurantifolia
essential oil. Citric acid Pad-dry-cure. Antimicrobial cotton

fabric. [71]

Molecular Inclusion

Epichlorohydrin
modified

β-cyclodextrin.

Lavender
essential oil,

indigo powder.
– Immersion-freeze

dried

Bifunctional dyed
and fragranced

cotton woven fabric.
[121]

Emulsification and Solvent Evaporation

Soy lecithin,
cholesterol.

Reactive dye
(vinylsulphone

azonaphthalene).

Acetic acid,
sodium sulphate. Dyeing. Dyed wool fabric [19]

Polylactic acid.

Bio based PCM,
(capric acid,

multiwall carbon
nanotube).

– Screen printing.
Thermo-regulated

3D polyester
knitwear.

[39]

Emulsification and Crosslinking

Chitosan. Basil oil. Acrylic binder. Immersion-drying.
Antimicrobial

Tencel/
polyurethane fabric.

[198]

Spray-Drying

Chitosan. Vanillin
essential oil.

Citric acid
and sodium

hypophosphite.

Immersion-dry-
cure.

Fragranced cotton
fabric. [131]

SOL-GEL

Tetraethoxy-silane—
TEOS. Paraffin PCM. – Pad-dry-cure. Thermo-regulated

cotton fabric. [199]
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7.5. Opportunities for Further Research

According to the available market reports, the microcapsules market is estimated to
reach USD 8.4 billion in 2021 and USD 13.4 billion by 2026 [200] and USD 17.31 billion by
2027 [201], at an intensive compound annual growth rate of 9.8% from 2021 to 2026 (200)
and 11.7% from 2020 to 2027 [201] for various vertical end-uses such as pharmaceuticals
and healthcare, food, home and personal care, textiles, agrochemicals and others [200].

Research and development should focus on the production of environmentally friendly,
biodegradable microcapsules that are less harmful to the environment than the use of classic
synthetic shell materials, which are difficult to degrade and pose a serious environmental
problem in the long term. More effective adhesion between microcapsules and textile fibres
must be developed to reduce the losses of microcapsules into the wastewater during the
washing process.

There is a need to move away from non-degradable synthetic materials not only in
the synthesis of microcapsules, but especially in the production of textile substrates, which
contribute to the accumulation of solid waste, and to microplastic pollution of habitats
via textile laundering wastewater [202,203]. However, it should be highlighted that the
cultivation of cellulosic fibres for cotton, on the other hand, requires large amounts of water
for plant growth, with intensive use of fertilisers, pesticides and defoliants, all of which
pose environmental challenges [204].

The classical textile pre-treatment processes of desizing, scouring and bleaching, which
are crucial for making textiles suitable for adsorption of microcapsules, textile auxiliaries,
dyes and pigments, need to be changed towards the use of environmentally friendly chem-
icals such as amylases, pectinases and hydrogen peroxide [205,206]. Functionalization
of textiles can be achieved using classical finishing agents and methods without or with
microcapsules to provide water and oil repellent, flame retardant or antimicrobial prop-
erties. The other option is the application of nanoparticles or microcapsules using more
sustainable and environmentally friendly technologies, namely plasma [207] and sol-gel
technology [208].

8. Conclusions

In the production of functional textiles, microencapsulation is used to improve prop-
erties or provide completely new functionalities, resulting in broader usability and higher
added value of the products.

Trends in publications on microcapsules for functional textiles show a growing number
of new scientific articles and patent documents, indicating strong interest in this field. Main
functionalities achieved with microcapsules in textile coatings include thermochromic and
photochromic effects, flame retardancy, improved thermal regulation, superhydrophobicity,
UV absorption, insecticidal and insect repellent effects, prolonged release of fragrances,
antimicrobial properties and special medical or cosmetic effects.

Microencapsulation has been used to impart properties to textiles that are not possible
or cost effective with other technologies. For example, liquids cannot be retained on
textiles. Permanent separation of a core material without release allows liquid actives
to be converted into solid discrete particles that remain functional in the textile coating
throughout the life of the product, as in the case of paraffinic PCMs of photochromic
substances. Volatile compounds would evaporate too quickly from textiles; microcapsules
with permeable shells allow sustained release by diffusion, as in the case of essential oils.
Rapid release from microcapsules can be planned and triggered by external stimuli, namely
pressure, abrasion or combustion, as in the case of pressure-sensitive fragrance textiles or
flame-resistant textile products.

Not all microencapsulation methods are specifically suitable for textile applications.
Commonly used methods include in situ and interfacial polymerization, simple and com-
plex coacervation, molecular inclusion and solvent evaporation from an emulsion. Each
of these methods has advantages and disadvantages. Aminoaldehyde microcapsules
prepared by in situ polymerization are widely used due to their excellent technological



Coatings 2021, 11, 1371 22 of 30

properties, including high impermeability, durability and shell resistance to chemical
agents. However, aminoplast shells release small amounts of formaldehyde and are not
readily degradable in the environment. Physico-chemical and physical methods allow
the use of environmentally friendly shell materials that are safer to use and degrade
more rapidly. However, lower resistance to technological parameters in the application of
microcapsule coatings and in washing of textile products remains an important obstacle.

Most of the traditional coating processes have been used for microcapsule-containing
coatings, provided that the microcapsules are small enough and can withstand the process
parameters such as temperature and pressure. Binders play a crucial role in coating
formulations. Acrylic and polyurethane binders have become popular in textile finishing,
while organic acids and catalysts for chemical grafting are gaining ground as crosslinkers
between microcapsule shells and cotton fibres. There still seems to be much room and
challenges to be explored and solved in this field to increase the durability of microcapsules
on textiles during use and maintenance of textile products.

There are standardised test methods recommended to evaluate the stability of mi-
crocapsules during use and care of textiles, especially the standards for washfastness
properties, such as ISO 105-C06, ISO 105-C08, ISO105-C09, ISO 105-C10 and ISO 6330. The
use of non-standardised test methods can only provide rough estimates, which makes
comparison between different studies difficult.

One of the greatest challenges for research in the field of functionalization of textiles is
the production of environmentally friendly biodegradable textiles containing biodegrad-
able microcapsules. This area is just beginning to emerge and is still largely unexplored.
The choice of techniques and materials to produce biodegradable microcapsules and coat-
ings is even more limited, as chemical polymerization methods and synthetic polymers are
mostly not applicable. So far, published studies have used physicochemical and physical
microencapsulation methods using natural polymers such as chitosan, gum Arabic and
gelatine or biodegradable synthetic polymers such as PLA. The biodegradability of micro-
capsules before and after their application on textile substrates needs further investigation.
One of the main obstacles to the widespread application of biodegradable microcapsules
in functional textiles is their unsatisfactory durability and resistance to washing, rubbing
and light, which are crucial from the perspective of textile care and of lasting functionality.
Further research should investigate the possibilities of introducing new biodegradable
materials for microcapsule shells and coating compositions with improved technological
properties or using functional groups on the microcapsule shell to enable the formation of
covalent bonds with the functional groups of the biodegradable textiles, so that a higher
adhesion between microcapsule and fibre could be achieved.
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