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Abstract
The application of edible coatings (EC) in combination with pulsed light (PL) treatments represents an emerging approach for
extending the shelf life of highly perishable but high value-added products, such as fresh-cut fruits and vegetables. The surface of
these products would benefit from the protective effects of ECs and the PL decontamination capability. This review describes in
detail the fundamentals of both EC and PL, focusing on the food engineering principles in the formulation and application of EC
and the delivery of efficient PL treatments and the technological aspects related to the food characterization following these
treatments and discussing the implementation of the two technologies, individually or in combination. The advantages of the
combination of EC and PL are extensively discussed emphasizing the potential benefits that may be derived from their combi-
nation when preserving perishable foods. The downsides of combining EC and PL are also presented, with specific reference to
the potential EC degradation when exposed to PL treatments and the screening effect of PL transmittance through the coating
layer. Finally, the potential applications of the combined treatments to food products are highlighted, comparatively presenting
the treatment conditions and the product shelf-life improvement.

Keywords Edible coatings . Pulsed light . Combined treatments . Food preservation . Shelf-life extension . Nonthermal
technologies

Introduction

Mild preservation techniques have, nowadays, gathered a key
role in many food productions. They are frequently used in
replacement of heat treatments, to preserve the food nutrition-
al and sensory properties, while ensuring microbial safety and
a prolonged product shelf life [1]. In the case of products
where heat treatments are not suitable, such as fresh or
fresh-cut fruits and vegetables, or raw or cured meat and fish
products, mild preservation techniques are chosen to avoid the
use of synthetic preservatives, such as sulfites, benzoic acid,
or its derivative salt, which are increasingly rejected by

consumers [2], and often represent the only option for wide-
range distribution if the use of chemical preservatives is not
allowed by food authorities [3, 4]. They can also be applied to
contribute to improving the shelf life for enhanced distribution
of perishable products or to compensate for logistics charac-
terized by inefficient structures or inadequate cold chain in
rural areas.

One possible, relatively simple approach, is represented by
edible coatings (EC) [2]. Differently from edible films, which
are first formed and then applied as a wrapping on the food
product, ECs are applied in liquid form directly on the surface
of the food to be coated, to exert a protective action against
mechanical damage and chemical reaction, and to act as a
moisture barrier. They also represent a physical barrier to mi-
crobiological attack. ECs have been traditionally used in food
conservation, such as in the case of wax coatings for fruit,
used since the twelfth century, chocolate coatings for confec-
tionery, or lipid films for meat products [5]. In their modern
version, ECs are applied as a very thin layer to minimally
affect product appearance, to protect food products from de-
terioration processes, including oxidation, moisture absorp-
tion/desorption, chemical reactions, and microbial growth, as
well as to improve their physical strength, reduce particle
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clustering, and possibly improve visual and tactile properties
of food product surfaces [5]. These functions are mainly based
on their capability to act as barriers against water or oil per-
meation and gas or vapor transmission [6].Moreover, ECs can
also be loaded with active ingredients, to integrate or develop
properties that can aid in extending the shelf life, such as
antimicrobial, anti-browning, antioxidant, coloring, and
flavoring agents and even nutrients [2]. In particular, active
coatings with antimicrobial properties are especially appeal-
ing, because they can be formulated with natural ingredients,
and, in addition to the above-mentioned physical barrier prop-
erties, ECs also enable controlled release of natural antimicro-
bials [7–10].

The use of ECs in combination with other preservation
technologies presents significant potential benefits to food
preservation, within the hurdle technology approach, to attain
mild but reliable preservation effects [3, 11]. The ECs have
been tested in combination with different nonthermal technol-
ogies, such as high hydrostatic pressure, pulsed light [8], γ-
radiation, ozone, UV light [9], and modified atmosphere pack-
aging [12]. In some cases, synergistic effects (e.g., in combi-
nation with γ-radiation and modified atmosphere packaging
[12] or high hydrostatic pressure [8]), in other cases, a simply
additive effect (e.g., in combination with UV light [9]) or
antagonistic effects (e.g., in combination with ozone [9] and
pulsed light [8]) were observed on microbial stabilization.
Pulsed light (PL) represents an extremely promising technol-
ogy for the surface decontamination of food products [13],
because of the microbial inactivation effect achieved by PL
through structural damages caused by photophysical and
photothermal effects, as well as the damage of the microor-
ganism DNA, among others [14]. Therefore, PL has a recog-
nized potential to be widely adopted in the food industry, as
recently reviewed [13]. It is specifically suitable to be applied
in combination with the application of ECs, to further contrib-
ute to extending the shelf life of high value-added food prod-
ucts, either by avoiding contamination after EC deposition,
also through in-package treatments, or as a strategy to attain
a fast initial reduction of the microbial load before the coating
process.

This review describes the combined use of edible
coatings and pulsed light treatments. It illustrates the
key issues in the formulation of coating solutions and
their deposition on food products, the addition of active
ingredients to expand their functionalities, and the char-
acterization methods, also as a function of the existing
food applications. It also addresses the main technical
aspects related to PL treatments, especially as a function
of the target preservation process. Finally, it presents a
critical analysis of the combination of ECs and PL treat-
ments, discussing the possible process configurations
and the interferences between the two technologies and
surveying the existing literature on the topic.

Edible Coatings

Materials

Coating Materials

ECs can be fabricated with different materials, which can be
classified into three categories: hydrocolloids, including poly-
saccharides and proteins; lipids; and composite materials,
consisting of a combination of different hydrocolloids or hy-
drocolloids and lipids, to exploit the complementary function-
al properties of the different constitutive materials or over-
come the respective drawbacks [5, 15, 16]. Table 1 reports a
survey of the main film-forming materials, with the indication
of the solvents needed for their application, and the main
advantages and disadvantages of the ECs obtained with such
materials. The selection of the coating materials and their ad-
ditives is generally based not only on the desired technological
properties, but also on market availability, cost-effectiveness,
effects on the sensory attributes of the final product, and con-
sumer acceptance [77, 78]. It is required that for market appli-
cations, the coating materials are generally regarded as safe
(GRAS) and approved by regulatory agencies, such as the US
Food and Drug Administration (US FDA), through the inclu-
sion in the Code of Federal Regulations (CFR) - Title 21, or
the European Food Safety Authority (EFSA), through the in-
clusion in the Food Additives database of the European
Commission [79].

Notably, polysaccharide-based coatings include many
water-soluble polymers, which are easy to prepare and deposit
on food products, and usually are cost-effective [80, 81].
Generally, very hydrophilic polysaccharide coatings do not
provide good water vapor barrier properties [82], but they
exhibit selective permeability for O2 and CO2 and resist lipid
migration [81, 83]. Among polysaccharide-based materials,
alginates have been widely used in different products because
of their properties and regulatory status [25–31]. Chitosan has
also been intensively investigated because of its intrinsic an-
timicrobial activity [84] and because its properties can be fur-
ther improved by chemical modification [9] or blending with
other polymers. Many native and modified starches from plant
sources have been used in the formulation of ECs because
they exhibit very good encapsulation, film-making, and emul-
sification properties. However, their application as ECs is lim-
ited by their poor mechanical strength and barrier properties
[85].Most protein-based ECs show good hydrophilic but poor
moisture barrier properties.

The application of lipids as ECs has not been favored,
because they often exhibit microscopic pores, high O2 solu-
bility, and diffusivity, and cause undesirable organoleptic
properties [86]. The combination of hydrocolloids and lipids
could improve the structural integrity and characteristic func-
tionality of the EC, as polysaccharide and proteins exhibit
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poor moisture barrier properties, whereas lipids exhibit poor
gas barrier properties.

Cross-linking Agents

Cross-linking by covalent and noncovalent bonds [87] of the
coating polymers chains, particularly proteins and polysac-
charides, can be achieved by the application of a cross-
linking agent after depositing the polymer coating solution
on the food surface, to form a more compact and resistant
layer [88, 89] and to improve mechanical strength, chemical
resistance, and thermal stability [90]. The most common
cross-linking agents are symmetrical bifunctional compounds
with reactive groups with specificity for functional groups
present on the matrix polymer [91]. The most common
cross-linking agents include glutaraldehyde for gelatin, cellu-
losic derivatives, and chitosan [92–95]; Ca2+ ions for alginate,
pectin, and whey proteins [96–99]; citric acid for starch and
cellulose derivatives [100–103]; and tannic acid for gelatin
and chitosan [104, 105].

Plasticizers

Plasticizers are additives rich in hydroxyl groups that
contribute to preventing cracking during handling and
storage, through the plasticization of the polymer net-
work. The primary objectives of plasticizer addition in-
clude increasing the free volume or molecular mobility
of biopolymers, decreasing intermolecular attractions be-
tween adjacent polymeric chains by reducing hydrogen
bonding between polymers chains, bestowing flexibility,
reducing brittleness, improving tear impact resistance,
and regulating the flow of the coating material
[106–111]. The most commonly used plasticizers are
polyols (propylene glycol, glycerol, sorbitol, polyethyl-
ene glycol), oligosaccharides (glucose, fructose, and su-
crose), and water (known as an excellent plasticizer
[112]). Glycerol is particularly suitable and often used
in hydrocolloid-based coatings [113, 114].

Surfactants

Adhesion of hydrophilic ECs on hydrophobic food sur-
face is inherently poor because the different chemical
nature of the two surfaces makes it difficult to obtain
a uniform EC [16, 115]. Surface active agents, such as
surfactants, are frequently added into coating formula-
tions to improve surface adhesion of hydrophilic coat-
ings on hydrophobic surfaces, and vice versa, increasing
the wettability of the product [116–118]. A widely used
natural surfactant in EC is lecithin, which is GRAS and
exhibits a high efficiency as an emulsion stabilizing
agent [119]. Other common surfactants are lecithin

derivatives, acetylated monoglyceride, ethylene glycol
monostearate, glycerol monostearate, and sorbitan fatty
acid esters (Tweens), which are all GRAS [120].

Antimicrobial, Antioxidant, and Anti-browning Additives

ECs can be loaded with different bioactive compounds of
natural origin to promote specific functionalities, such as an-
timicrobial, antioxidant, and anti-browning activities, by
retarding deterioration, rancidity, or discoloration due to oxi-
dation caused by free radicals and reducing the extent of en-
zymatic and nonenzymatic oxidation of phenolic compounds
[121–125]. The organoleptic properties of the coated products
can also be improved if the coating is loaded with flavoring or
coloring agents, as well as with sweeteners, spices, and sea-
sonings [82, 111, 126].

Essential Oils Essential oils (EOs), which consist of a mixture
of esters, aldehydes, ketones, terpenes, and phenolic com-
pounds, found in aerial or underground parts of plants [127],
are gathering an increasing interest because, in addition to
their well-documented health-beneficial properties [128,
129], they exhibit a strong nonspecific antimicrobial action
[130]. Because of their low solubility in water, EOs need to
be delivered through suitable carriers, such as nanoemulsions
or other colloidal particles [127, 131]. In the case of ECs, the
biopolymer solution might contain macromolecules with an
interfacial activity, which is sufficient to stabilize a fine dis-
persion of EOs; however, in most cases, an additional emul-
sifier and an adequate emulsification process are required to
obtain a coating with homogeneously dispersed EOs
[132–134]. However, some authors have reported that the
incorporation of essential oils in EC might impart undesirable
sensorial modifications in foods [128, 135].

Plant Extracts Different plant extracts may exhibit a signifi-
cant antimicrobial activity, associated to their high content in
polyphenols [136], as well as antioxidant and antimutagenic
properties, and to inhibit lipid oxidation in food [137]. For
example, Aloe vera gel, because of its high content in antisep-
tic compounds, as well as in polysaccharides, has attracted
increasing interest in the preparation of active coatings
[138–141]. Several other plant extracts have been tested as
additives to coating formulations for their antimicrobial activ-
ity, such as Tartary buckwheat extracts [142] or olive leaf
extracts [143]. A sustainable source of antimicrobial bioactive
compounds is represented by agri-food residues, which are
increasingly exploited, such as the ethanolic extracts of the
leaves and pods of cocoa, the leaves and hulls of coffee
[144], or the grape seed extracts [39]. Similar to EOs, the
addition of natural extracts to EC may impart a bitter taste
and astringent or off-flavor, impairing the acceptability of
the product [135, 145].
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Extracts from Algae and Mushrooms Algae and mushrooms
are naturally rich in bioactive compounds, with significant
antimicrobial, antioxidant, antiviral, and anti-inflammatory
activities [137], such as proteins, antioxidant molecules (e.g.,
polyphenols, flavonoids, and carotenoids), polyunsaturated
fatty acids, and polysaccharides [146]. For example, for the
preparation of ECs for strawberries, both Palmaria palmata
seaweed extracts, in combination with chitosan [147], and
fucoidan recovered from Laminaria japonica alga [148] were
tested.

Animal-Derived Compounds Another important class of natu-
ral antimicrobial compounds is represented by those derived
from animal sources. Chitosan is a polycation biopolymer,
naturally present in the exoskeletons of arthropods and crus-
taceans [149], which has attracted significant interest because
of its biodegradability, biocompatibility, bioadhesion, and
nontoxicity [150]. Because of its film-forming properties
and intrinsic antimicrobial activity, it is highly effective in
extending the shelf life of food products, retarding oxygen,
moisture, solute transports, and aromas [151]. It must be
remarked that chitosan can be obtained also from fungal
sources [152] and chitin through diatom photobioreactors
[153, 154].

Lysozyme is an enzyme naturally found in mammalian
milk and poultry eggs [155], which is usually considered
safe to be added directly to food [137]. Its combination
with compounds capable of destabilizing the outer mem-
brane of Gram-negative bacteria, such as nisin, EDTA, or
EOs, significantly increases the spectrum of its antimicro-
bial activity [137]. Lactoferrin is a whey glycoprotein,
which can bind one or two ferric ions (Fe2+ or Fe3+),
whose antimicrobial activity is reported to cause outer
membrane damage s t o mi c rob i a l c e l l s [ 156 ] .
Lactoperoxidase, found in high concentrations in bovine
milk [157], exhibits antimicrobial activity mainly against
Gram-negative bacteria and is frequently used in combi-
nation with chitosan in ECs [158].

Microbial-Derived Compounds A variety of compounds of
microbial derivation exhibit a significant antimicrobial activ-
ity. Nisin is a bacteriocin (antimicrobial peptide) produced by
lactic acid bacteria (Lactococcus lactis subsp. lactis) [137],
which is a GRAS food preservative, approved for commercial
products [159], because of its antimicrobial activity against
Gram-positive bacteria [160]. Lacticin is a two-peptide bacte-
riocin, also produced by L. lactis subsp. lactis, but with a
stronger activity and higher target specificity against Gram-
positive bacteria than nisin [161]. Pediocins, produced by
Pediococcus species, are small, cationic proteins with
antilisterial activity and antimicrobial effect against Gram-
positive bacteria, which are reported to maintain their antimi-
crobial activity over a wide range of pH values and

temperature range [162]. Reuterin is a D-ribose analog gener-
ated by Lactobacillus reuteri during glycerol metabolism. It
has a recognized antibacterial activity against food-borne
pathogens and spoilage bacteria, with higher activity against
Gram-negative bacteria than Gram-positive bacteria [163].

Organic acids, such as acetic, ascorbic, citric, and lactic
acid, are organic compounds, all characterized by one or more
carboxyl groups (–COOH) in their structure, and in addition to
being GRAS, they are known to possess antimicrobial prop-
erties of interest for food application [137].

Applications of Edible Coatings to Food Products

A survey of the recent scientific literature on the application of
ECs for the preservation of different products, summarized in
Table 2, includes their effect on shelf-life extension. In gener-
al, product applications have focused on the treatment of prod-
ucts characterized by high added value, short shelf life, or
difficult logistics associated with production in remote or rural
areas. As a recent trend, it must be remarked that natural coat-
ing materials are increasingly attracting the interest of re-
searchers, as shown by the wide use of Aloe vera gel
[138–141] and other natural polysaccharides, such as chitosan
[9, 12, 25, 39, 74, 142, 147, 152, 164–166, 168–170, 172,
174, 179, 180, 186, 190, 193, 201], or seaweed extracts
[148], which exhibit an intrinsic antimicrobial activity, signif-
icantly contributing to extending the product shelf life. The
tendency toward natural products is also confirmed by the
wide use of natural gums [47, 181], starches [20, 188, 195],
cellulose, and its derivatives [32, 167, 173, 175, 194], and
other compounds recovered from agri-food residues [144,
183, 203]. Glycerol is frequently used as a plasticizer, at con-
centrations ranging from less than 1 to 20%. Another trend
that became evident in recent years is the addition of natural
extracts as antimicrobial or antioxidant agents, including es-
sential oils [9, 12, 29, 172, 177–179, 181, 185, 186, 188, 192,
193, 195, 198, 202] and different plant and fruit extracts [39,
48, 142, 144, 164, 167, 174, 182, 184, 187, 194, 201].

Pulsed Light

Fundamentals

PL, also known as pulsed UV light, high-intensity broad-spec-
trum pulsed light, pulsed white light, or intense light pulses, is
a nonthermal technology that has gained increasing interest in
the last decade, from both the research world and food pro-
cessing industry, as an alternative to traditional chemical and
thermal microbial decontamination methods of foods, food
contact surfaces, and equipment [204, 205].

PL is claimed as an improved version of the UV rays
technology, especially for applications requiring rapid and
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Table 2 Edible coatings used for the preservation of different food products, with details on coating formulation

Product Coating solution Plasticizer/surfactant Active ingredient References

Fruits

Apricot Aloe vera gel or basil seed mucilage – – [140]

Blueberries Gum arabic Glycerol Baobab fruit extracts [48]

Blueberries Fungal chitosan Glycerol + Tween 20 Procyanidins from grape seeds [164]

Dates Gelatin, chitosan, or guar gum Glycerol Olive oil + ascorbic acid [165]

Figs Sodium alginate + calcium chloride + chitosan Lecithin + glycerol Olive oil [166]

Grapes Xanthan gum + calcium chloride Glycerol + Tween 20 Ascorbic acid [51]

Guava Chitosan – ZnO nanoparticles [25]

Guava Carboxymethyl cellulose + stearic acid Lecithin Date seed oil [167]

Kinnow
mandarin

Carboxymethyl cellulose – – [32]

Kiwi Chitosan hydrochloride – – [168]

Mango Gum arabic – – [47]

Orange Aloe vera gel Glycerol – [138]

Papaya Aloe vera gel + agar gel – Ascorbic acid + citric acid [141]

Peaches Chitosan – Chlorogenic acid [169]

Pears Cassava starch reinforced by starch nanocrystals Glycerol – [20]

Strawberries Aloe arborescens gel – – [139]

Strawberries Chitosan – Palmaria palmata seaweed extracts [147]

Strawberries Fucoidan from Laminaria japonica seaweed – – [148]

Strawberries Chitosan Glycerol – [170]

Strawberries Maltodextrins + whey protein isolates PGPR Water in olive oil emulsion [171]

Sweet cherries Sodium alginate + calcium chloride or chitosan Glycerol Olive leaf extracts [143]

Vegetables

Broccoli florets Modified chitosan – Mandarin oil nanoemulsion [172]

Brussels sprouts Sodium carboxymethyl cellulose Candelilla wax +
Tween 40

[173]

Green beans Modified chitosan – Mandarin oil nanoemulsion [9, 12]

Romaine lettuce Chitosan hydrochloride – – [168]

Rucola Modified chitosan – Lemon oil nanoemulsion [174]

Spinach Nanocellulose (from hemp trunks) – - [175]

Tomatoes Pectin + corn flour Glycerol – [176]

Tomatoes Ethanolic extracts of the leaves and pods of
cocoa, leaves, and hulls of coffee

Glycerol + sodium
hypochlorite

– [144]

Fresh-cut fruits and vegetables

Apple Sodium alginate + calcium chloride Glycerol Thyme EO + ascorbic acid + citric acid [177]

Cantaloupe
melon

Sodium alginate + calcium chloride Glycerol Thyme EO + ascorbic acid + citric acid [178]

Cantaloupe
melon

Carboxymethyl cellulose or chitosan – Citral nanoemulsion [179]

Cantaloupe
melon

Fungal chitosan – – [152]

Cucumber Chitosan – – [180]

Eggplants Soy protein isolate Glycerol + beeswax – [181]

Globo artichoke Locust bean gum Glycerol Foeniculum vulgare EO [181]

Lotus root Xanthan gum + chitosan – – [182]

Mango Sesame proteins + guar gum + calcium chloride Glycerol Fresh mango puree [183]

Papaya Sodium alginate Polyoxyethylene
sorbitan monooleate

Thyme EO or oregano EO [29]

Pineapple Sodium alginate Glycerol Citral nanoemulsion [184]

Fish

Hake medallions Whey protein isolates Glycerol Oregano EO [185]
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effective disinfection treatments. UV radiation is the part
of the electromagnetic spectrum of sunlight, in the range
100–400 nm, which can be subdivided into UV-A (315–
400 nm), UV-B (280–315 nm), UV-C (200–280 nm), and
the vacuum UV range (100–200 nm). UV-C has the stron-
gest germicidal effect and is widely used to inactivate
microorganisms [206]. The classical UV-C treatment
works in a continuous mode, called continuous wave
(CW)-UV light, and typically involves the exposure (from
minutes to hours) of the substrate to be disinfected to low
power (5–80 W) monochromatic light (254 nm) emitted
by a low-pressure mercury lamp [204]. In the PL process,
instead, food or nonfood materials are exposed to a suc-
cessive repetition of short (100 ns to 1 ms) high-intensity
pulses (flashes) of polychromatic light (180–1100 nm),
including UV (180–400 nm), visible (400–700 nm), and
infrared (700–1100 nm) regions, emitted by an inert gas
(e.g., xenon) lamp [13]. The light used for food process-
ing applications is typically pulsed at 1 to 20 flashes per
second at an energy density in the range of about 0.01 to
50 J/cm2 at the surface [13].

The inactivation effectiveness of PL has been tested against
a great variety of pathogenic and spoilage microorganisms,
including bacterial species (both as vegetative cells or spores),
yeast, fungi, and viruses spread on agar, food, or food contact
surfaces or suspended in fluids (air, water, liquid foods) [13,
207–209].

The lethal action of the PL process is attributed to the
effects of the high peak power and the UV component of the
broad spectrum of the light flashes, which result in the coex-
istence of different inactivation mechanisms. In particular, the
UV component of PL can be absorbed by DNA and other
components of the cell, thereby causing photochemical dam-
age, which kills microorganisms [210]. Moreover, PL spec-
trum includes visible and near-infrared regions, which convey
heat to the surface of the processed substrate, inducing a local
instantaneous increase of the temperature of a thin (a few μm
thick) surface layer only to an extent sufficiently high to de-
stroy microbial cells (photothermal effect) [211, 212].
Additionally, structural damages caused by the high-power
pulsing effect (photophysical effect) have been also detected
through microscopy detection as well as the quantification of

Table 2 (continued)

Product Coating solution Plasticizer/surfactant Active ingredient References

Huso huso fillets Chitosan – Fennel EO [186]

Tilapia fillets Chitosan – Tartary buckwheat extracts [142]

Trout fillets Sodium alginate – Resveratrol [187]

Trout fillets Quinoa starch Glycerol Lemon or sage EO [188]

Meat

Beef Gelatin + chitosan Glycerol - [189]

Beef Chitosan – – [190]

Beef Whey protein nanofibrils Glycerol Titanium dioxide nanotubes [191]

Chicken breast Whey protein isolates Glycerol Oregano EO [192]

Chicken breast Chitosan Glycerol + Tween 80 Zataria multiflora Boiss. EO [193]

Pork Chitosan + gelatin – Grape seed extracts [39]

Pork Sodium alginate + carboxymethyl cellulose Glycerol Epigallocatechin gallate [194]

Miscellaneous

Eggs Sweet potato starch Glycerol + Tween 80 Thyme EO [195]

Eggs Whey protein isolates + pectin + transglutaminase Sorbitol – [196]

Fiordilatte cheese Sodium alginate + calcium chloride – Freeze-dried Lactobacillus rhamnosus +
fructooligosaccharides

[197]

Gouda cheese Zein – Laurel EO [198]

Gouda cheese Whey protein Glycerol Lactoperoxidase + Bunium persicum EO [199]

Kashar cheese Whey protein concentrate Glycerol Williopsis saturnus killer yeast [200]

Manchego cheese Chitosan Glycerol + Tween 20 Santolina chamaecyparissus L. extracts [201]

Pholiota nameko
mushroom

Sodium alginate Glycerol Thyme EO + L-cysteine + nisin [202]

Shiitake
mushrooms

Chitosan + guar gum Glycerol – [74]

Goat and Tybo
cheese

Agar Glycerol Enterocins from E. avium [18]

Walnut kernels Walnut flour protein Glycerol – [203]

551Food Eng Rev  (2021) 13:544–569

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



the leakage of intracellular matters, such as proteins, which
was not observed when the samemicrobial cells were exposed
to CW-UV light treatment [213, 214]. The relative importance
of eachmechanismmay depend on the peak power of the light
pulses, the composition of the emitted light spectrum, and the
type of microorganism as well as the optical properties of the
target substrate, among others.

The occurrence of this multitarget microbial inactivation
mechanism, along with the high emission power, which is
likely to increase the capability of PL to penetrate the treated
substrate, can explain the generally reported higher steriliza-
tion effectiveness of PL in comparison with CW-UV [214].
Moreover, PL is a fast and easily operating, residue-free de-
contamination technology, which is characterized by low en-
ergy consumption, can be combined with other disinfection
methods, and is suitable for integration in industrial process-
ing lines, enabling high product throughput.

Technical Aspects and Pulsed Light Equipment

Definitions and Terminology

Before providing information concerning PL equipment and
processing, it is worth giving the definition and units of the
main parameters characterizing this technology [215].

& Pulse duration (or pulse width) is the time interval (ns to
ms) during which the light energy is delivered.

& Number of pulses (or flashes) is the total number of pulses
or flashes of light delivered to the target substrate.

& Pulse repetition frequency is the number of pulses of light
delivered per second (Hertz [Hz]), commonly expressed
as pps (pulses per second). Due to the design features of
the lamp, in PL systems, the pulse frequency is typically
limited to a few Hertz. However, higher pulse frequency
can be achieved by using two or more lamps, placed and
flashed in sequence.

& Exposure time is the actual time (in seconds) of exposure
of the substrate to the light flashes and is calculated as the
number of pulses times the pulse width.

& Peak power, ϕ, is pulse energy divided by the pulse dura-
tion and (in watts (W)).

& Fluence rate (Fo) is the radiant power passing from all
directions through an infinitesimally small sphere of
cross-sectional area, dA, divided by dA (in W/m2).

& Fluence (F) (or PL dose) is the total radiant energy from
all directions passing through an infinitesimally small
sphere of cross-sectional area dA, divided by dA, for a
certain time (in J/m2, even though in PL technology, it is
often expressed in J/cm2). The fluence is the fluence rate
multiplied by the exposure time. However, when the sub-
strate exposed to PL treatment is a given volume of a
liquid containing a certain microbial load expressing the

PL dose as total radiant energy per unit area is not correct.
Thus, several authors have proposed that the fluence (in J/
L or J/mL) is correctly defined, according to Eq. 1, as the
PL energy output (radiant power, Φ, in W) delivered to a
volumetric flow (Q, in L/s, or mL/s):

F ¼ ϕ
Q

ð1Þ

The evaluation of the operational costs based on the volu-
metric electrical energy input (J/L or J/mL) allows comparing
the results of PL treatments carried out with different PL units
as well as with those obtained utilizing other inactivation tech-
nologies [206].

Pulsed Light Generation and Equipment

PL is generated using pulsed power technologies that involve
the generation of high-power electrical pulses and their trans-
formation into high-power light pulses. The systems used for
PL applications typically include a power/control module, a
lamp housing with a flash lamp, a treatment chamber, and an
auxiliary equipment, such as pumps, cooling systems, and
devices to measure temperatures and fluence rate or fluence.

The power/control module is used to manage the process,
start the flashes, control the treatment time, and modulate the
generation of high-power electrical pulses to obtain the de-
sired configuration of the pulse energy and rate. In particular,
during PL treatment, the power/control module converts alter-
nating current (AC) into direct current (DC), cyclically accu-
mulated in a capacitor bank, and released by a special switch
as high-voltage electric pulses through the lamp unit. The
latter consists of one or more lamps with quartz envelopes,
each equipped with two electrodes, typically filled with inert
gases (e.g., xenon, krypton). The inert gases effectively con-
vert the pulsed electrical energy into a broad spectrum of
pulsed radiant energy. Approximately 25% of the wavelength
lies in the UV range, 45% in the visible range, and 30% in the
infrared range. Moreover, the shape (linear, spiral, etc.) and
the size of the lamp can be customized for the specific appli-
cation to ensure uniform irradiation of the target surface
(http://www.xenoncorp.com/).

The PL equipment can be operated either in batch or in
continuous flow mode, as schematized in Fig. 1.

Batch systems are the most widespread and used for pre-
liminary investigations at the laboratory scale on the effects of
the main PL treatment parameters on the decontamination of
liquid and solid products. Figure 1a shows a schematic of a
typical laboratory-scale batch system. It consists of a chamber
in which the solid or liquid sample is placed on an adjustable
tray that allows regulating the distance between the sample
and light source. A housing lamp with a xenon lamp is gen-
erally mounted on the upper part of the treatment chamber.
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Multiple lamps can be used to ensure more uniform irradiation
of the product surface. A high-voltage cable connects the lamp
to the power/control module, which allows setting the treat-
ment time or number of flashes to be delivered to the sample.
The heat unavoidably generated by the lamp is removed by a
cooling system, using water or filtered air circulation.

Although most of the equipment currently used are at the
laboratory scale and operate batch-wise, several works have
highlighted the advantages of continuous toward discontinu-
ous flow systems, such as processing larger quantities of prod-
ucts, and more efficient microbial inactivation, due to the im-
proved light exposure of the product and enhanced treatment
uniformity [208].

Continuous flow systems can be designed to process either
liquid or solid products. To treat liquid products, the liquid is
pumped in the treatment chamber through a quartz tube which
allows the penetration of light flashes (Fig. 1b). The exposure
time and, consequently, the total number of flashes or fluence
delivered to the product depend on both the volume of the
quartz tubes and the flow rate. Optimization of geometry
and the number of quartz tubes, along with their relative po-
sition to the lamp, is required to ensure maximum disinfection
effectiveness with minimum energy consumption. Packaged
or unpacked solid products, instead, can be loaded in the treat-
ment chamber with conveyor belts or roller conveyors moving
the product through the irradiated zone at the speed that guar-
antees the desired exposure time (or fluence) (Fig. 1c).

Several laboratory-scale PL systems are provided by dif-
ferent manufacturers. The most commonly used ones are the
RS-3000C SteriPulse-XL system (Xenon Corp., Wilmington,
MA, USA) [216]; the XeMaticA-2L system (SteriBeam
Systems GmbH, Germany) [217], equipped with a single lin-
ear Xenon flash lamp; and the PL mobile decontamination
unit (Claranor, Rouaine, France) equippedwith 4 xenon lamps
(JA series, Verre et Quartz, Bussy Saint Georges, France)
[218]. All these equipment differ for the wavelength

distribution, pulse duration (50–360 μs), pulse repetition rate
(0–5 Hz), input voltage (100–3800 V), and the cooling system
of the lamp (forced air or circulating water). For continuous
flow treatment of liquids, only a few laboratory-scale PL sys-
tems are currently available, which include in-house–devel-
oped equipment [208, 219, 220] or commercial dynamic flow-
through pilot unit (Maria PUD system, Claranor, Manosque,
France) [221].

Commercial-scale PL systems are nowadays successfully
used in the food industry, but only for the decontamination of
packaging material (e.g., caps, cups, trays, and steel cans,
bottles, and lids). These PL units can be easily integrated into
the existing continuous processing lines to decontaminate up
to 4,000–90,000 items/h and can provide decontamination
levels with a 3–5 log reduction of the reference microorgan-
isms (http://www.claranor.com/).

Factors Affecting the Effectiveness of Pulsed Light
Microbial Decontamination Treatment

Several studies have demonstrated that the effectiveness of PL
treatment depends on many factors that are critical to the out-
come of the process as they may affect the treatment unifor-
mity and the level of energy dose than ultimately reaches the
target [204, 222, 223]. These factors can be classified essen-
tially into four groups: processing parameters, design param-
eters, product properties, and microbial factors [223].

Processing Parameters Processing parameters markedly affect
microbial inactivation achieved by PL treatments. The most
important factor determining the inactivation effectiveness of
PL is the total fluence (or the total amount of photons) incident
on the sample. Therefore, the required decontamination effect
is obtained properly optimizing the parameters affecting the
total fluence, namely the distance of the substrate from the
lamp, the exposure time, the number and duration of pulses,

Fig. 1 Schematic of pulsed light systems for batch treatments (a), continuous treatments of liquid food (b), and continuous treatments of solid food (c)
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and the input. With increasing the intensity of these parame-
ters or decreasing the distance of the product from the lamp,
the total fluence increases and, hence, microbial inactivation is
enhanced [204, 208, 222, 223].

Appropriate PL dosimetry is fundamental to compare re-
sults and for process scale-up [215]. In this regard, fluence
measurements should be standardized and precaution should
be taken in reporting the energy dose at the substrate surface
or within the substrate, which is substantially different from
the energy delivered by the light source. This is because of the
radiation loss attenuation across the path length of the treat-
ment medium due to light absorption and scattering phenom-
ena [221, 224].

The composition of the PL spectrum is another important
process parameter determining the antimicrobial action of PL
technology [217, 225–227]. Although the effectiveness of the
full spectrum of high-intensity PL has been widely demon-
strated to be effective against different microbial species, the
photochemical effect of UV-C plays a major role in microbial
inactivation. Therefore, depending on the specific application,
the use of wavelength filters, such as solid filters (e.g., glass
UV filters) or liquid filters (e.g., CuSO4 solution) [209, 217],
or the adjustment of electrical current [228] allows selecting
the most suitable wavelength ranges emitted by the lamp to
achieve the desired microbial inactivation while avoiding or
minimizing alterations of the substrate properties.

The temperature increase in the substrate exposed to PL
treatment is mainly a function of the total amount of energy
delivered by the light source to the target, as well as of the
pulse frequency and composition of the PL spectrum.
Preventing overheating is of utmost importance to avoid seri-
ously compromising food quality, especially during long pro-
cessing time. To this purpose, an efficient cooling system is
incorporated in the equipment, and an appropriate pulse repe-
tition rate and distance between the product and the lamp
source must be selected [208].

Design Parameters Geometry and setup of the treatment
chamber, lamp, and deflector as well as the number of lamps
significantly influence the treatment uniformity and, hence,
the efficiency of the PL process and product quality.

Product Properties The composition and physical properties
of the substrate exposed to PL treatment, which can enhance
absorption, reflection, or scattering phenomena of the incident
light or induce shading effect, affect the effective radiation
dose reaching the target, thus biasing treatment effectiveness
and uniformity. In this regard, proteins and fat-rich substrates
are unsuitable for PL treatment, since these components can
competitively absorb light thus decreasing PL inactivation
effectiveness, while light absorption does not occur in carbo-
hydrates [222]. Therefore, food products with high protein
and fat content have little potential to be efficiently

decontaminated by PL, while vegetables and fruit are eligible
for PL treatment [204].

Different physical properties of the substrate are playing a
role when flashing solid or liquid foods. Opacity, turbidity,
coloring compounds, viscosity, and suspended particles may
significantly hinder either the penetration of light pulses and
light absorption into the liquid food causing a significant de-
crease in PL treatment effectiveness and uniformity [208,
221]. Therefore, while PL can be successfully applied to trans-
parent liquid (e.g., drinking water and clear fruit juices), in
opaque liquid foods, such as orange juice or milk, the effect
of PL might be limited only to the superficial layer of the
substrate. Moreover, solid product properties, including to-
pography, reflectivity, hydrophobicity of the treated surface,
color, and opacity, greatly influence the successful PL micro-
bial inactivation [209, 229]. For example, surface roughness,
crevices, or pores may shade or hide microbial cells during
treatment. The hydrophobicity of the food surface may affect
the distribution of microbial cells promoting the formation of
cell clusters and reducing PL inactivation. Furthermore, a high
surface reflectivity, causing a decreased light absorption of the
microbial cells, could lead to poor inactivation [229, 230].

The limitations to the use of PL technology in the decon-
tamination of solid matrices are common to other methods
applied in the food industry to decontaminate raw fruits and
vegetables or packaging material, such as washing with solu-
tions containing chlorine, peracetic acid, or hydrogen perox-
ide [205, 209]. The challenge is, therefore, represented by
engineering solutions as the re-design of the equipment to
promote more uniform surface irradiation of rough surfaces
of solid and opaque liquid products [13, 204]. Additionally,
absorption-enhancing agents (e.g., carotenoids, fat), sprayed
on the surface or added to the formulation of foods, have been
suggested to maximize the absorption of the bactericidal
wavelength of PL [209, 231].

Microbial Factors The lethal effect of PL also depends on the
intrinsic properties of the microbial cells, namely the type of
microorganism, growth phase, and inoculum size. For exam-
ple, it is widely recognized that PL susceptibility of microor-
ganisms exhibits the following trend: Gram-negative bacteria
< Gram-positive bacteria < yeasts < bacterial spores < molds <
viruses [13]. The growth phase is another microbial factor
which may affect the light sensitivity of microorganisms. In
general, microbial cells in stationary growth phase show great-
er resistance to PL than cells in either lag or exponential phase
[222]. Moreover, PL decontamination is less effective in high-
ly contaminated products due to light attenuation phenomena
[204]. In such a case, microorganisms may overlap or aggre-
gate, the outer microorganisms shading those located under-
neath or inside the cluster [222, 232], and, consequently, non-
uniform treatments and reduced PL inactivation effectiveness
are likely to occur.
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In conclusion, there is a need for more systematic and ac-
curate studies on the effect of the most relevant factors affect-
ing the successful application of the PL process, which should
include also the standardization of the measurements of the
treatment dose as well as of the experimental procedures used
by different research groups. Additionally, the design of PL
systems should be optimized for each application (e.g., induc-
ing a turbulent flow or enhancing the mixing conditions) to
improve the treatment homogeneity and, thus, increasing the
microbicidal effects of this technology. Finally, the need of
integrating proper cooling systems in the treatment chamber
should be emphasized to minimize temperature buildup dur-
ing the pulse treatment.

Main Applications to Food Products

PL treatment is a fast, environmentally friendly, nonthermal
technology with many potential applications in the food in-
dustry for food processing and food contact surface decontam-
ination. In this regard, the technology appears especially in-
teresting for the decontamination of food packaging material,
fresh and fresh-cut produce prior to or after packaging, as well
as for the stimulation of fruit physiology to promote the pro-
duction of functional compounds. Since 1996, PL irradiation
has been approved by the US Food and Drug Administration
to decontaminate food or food contact surfaces, provided that
the treatment uses a xenon lamp with an emission wavelength
between 200 and 1000 nm, a pulse duration not exceeding 2
ms, and a cumulative energy level not exceeding 12 J/cm2

(Code of Federal Regulation, CFR: 21CFR179.41 [233]).
Despite the recent advancements of PL technology, the

increasing number of PL manufacturers, and the number of
studies on surface decontamination, currently, PL has been
successfully applied at the industrial scale only to decontam-
inate food packaging materials (http://www.claranor.com/).
The utilization of PL treatments at the pilot or industrial
scale to extend shelf life and improve the quality of food
products is still lacking.

The capability of PL to inactivate microorganisms, either
artificially inoculated or naturally present on the surface of
food products, before packaging has been extensively inves-
tigated on a large number of fruits and vegetables. The results
reported in the literature demonstrated that, although complete
inactivation is not possible, PL treatments allowed obtaining
from 1 to 6 log reduction of the microbial load while preserv-
ing quality attributes of foods [13]. The different inactivation
levels reported often arise from equipment type and configu-
ration, experimental protocols, and fluence measurements oth-
er than individual characteristics of the microbial strains.

For example, Bialka and Demirci [234], by applying a PL
treatment at fluences of 23–59 J/m2, observed a reduction of
2–4 log CFU/mL of Escherichia coli O157:H7 inoculated on
the surface of blueberries, raspberries, and strawberries. In

another study, Aguiló-Aguayo et al. [235] assessed the impact
of PL, at a fluence of 2.3 or 5.4 J/cm2, on surface decontam-
ination of native microflora or inoculated Saccharomyces
cerevisiae of red-ripe tomatoes. PL treatment was more effec-
tive against the inoculated microorganisms (2.3 log CFU/mL
reduction) than total microflora (1 log CFU/mL reduction).
The authors also investigated the impact of PL exposure on
physicochemical (color, texture, weight) and nutritional prop-
erties of tomatoes during storage at 20 °C for 15 days.
Interestingly, they found that PL treatment did not induce
any changes in physicochemical properties of tomatoes, while
the nutritional properties of the PL (30 J/cm2)-treated samples
remained unaffected (ascorbic acid) or were improved (total
lycopene, α-carotene, and β-carotene).

The in-package decontamination of food products with PL
is also of great interest for the future commercial application of
this technology, since it allows the treatment of food already
packed, avoiding undesired post-treatment recontamination.
Nevertheless, only a few publications, so far, focused on in-
package decontamination of food products, most of them re-
ferred to decontamination ofmeat andmeat products, fish, and,
to less extent, of fruits and vegetables [236]. Therefore, more
research efforts are required to assess the feasibility of in-
package PL processing of foods. Future studies should inves-
tigate not only the effects of physical properties of the prod-
ucts, processing conditions, and susceptibility of the native
microflora to PL exposure, but also the chemical (e.g., compo-
sition), physical (e.g., thickness), and optical properties (e.g.,
UV transmissivity) of the packaging films. Moreover, particu-
lar attention should be paid to evaluate the structural and bar-
rier property changes of packaging and migration of com-
pounds from packing materials to foods induced by PL.

Finally, several recent studies reported the potential of PL
in modulating the metabolic activity of fresh produce [237,
238]. The main findings were the delay of senescence and
deterioration of fruits and vegetables during storage in MAP
and, interestingly, the stimulation of plant natural defenses
against fungal diseases and the biosynthesis of bioactive anti-
oxidant compounds [216, 237–239]. For example, it has been
shown that PL exposure can significantly increase lycopene
content in tomatoes [216], the amount of anthocyanins and
phenolic compounds in figs [240], the phenolic compounds
in apples [239] and persimmons [241], and the vitamin D2 in
mushrooms [242]. It is particularly noteworthy that the indus-
trial implementation of this kind of PL treatment already took
place [243].

Combined Edible Coating and Pulsed Light
Treatments

Several methods have been proposed for the preservation of
fresh products, which could allow better retention of their
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quality attributes and overcome the limitations and drawbacks
of traditional thermal treatments, especially their strong im-
pact on the nutritional, functional, and sensorial properties of
products [244]. Some of the nonthermal preservation methods
that have been investigated include the deposition of ECs
loaded with additives (active EC), the use of controlled atmo-
sphere storage or modified atmosphere packaging, high pres-
sure, PL, pulsed electric fields and ultrasounds treatments, and
ionizing radiations [245]. However, often the hurdle approach
is more useful and successful than the single method, the two
main advantages relying upon the superimposition of the ef-
fects of the different preservation factors and to the possibility
to tune the more expensive stress to lower intensities, which
positively affect the costs and the energy expenditure of the
innovative technology [11].

In the “Edible Coatings” and “Pulsed Light” sections, the
advantages of using active ECs and PL for food preservation
have been outlined, including the reduction of the incidence of
food-borne pathogens and spoilage microorganism, either
through their inactivation or growth inhibition, the extension
of the shelf life of the produce, and the prevention of food
quality losses along the distribution chain. By combining
these two hurdles, efficient food preservation methods can
be developed, exploiting the different antimicrobial mecha-
nisms of the two technologies and different time scales of
operation (PL causes an immediate microbial reduction on
the food surface, while active ECs ensure the inhibition of
microbial growth over an extended time).

ECs and PL treatment can be applied to the product in two
different sequences: EC followed by PL treatment of foods
(before packaging or eventually already in-package), or PL
treatment applied to the product which is then covered with
the EC. Following the first approach, residual or cross-
contamination from the coating surface is avoided, contribut-
ing to extend the shelf life of the product. The application of
PL on coated products facilitates their manipulation allowing
a better exposure to light pulses of the entire surface, which is
not possible for packaged products. Despite the screening ef-
fects of the packaging could reduce PL treatment effective-
ness, the exposure of foods to light flashes after packaging is
particularly advantageous to extend the shelf life of products
due to the removal of residual contaminations both on foods
and package.

Following the second approach, PL is used to decon-
taminate the surface of the products before their stabiliza-
tion obtained by applying the EC. This strategy is partic-
ularly useful when a significant reduction of the microbial
population on the product surface is needed. In this case,
cross-contamination should be avoided, and therefore, ed-
ible coatings must be applied through spraying or
electrospraying techniques. Moreover, following this ap-
proach, the process becomes more laborious, being two
stages of drying or dripping off from the product

necessary before the PL treatment and after the coating
application.

These two alternative processing strategies are depicted in
Fig. 2, reporting a generic processing line for fruit and vege-
table transformation [246] in which the EC and PL preserva-
tion methods are implemented individually (Fig. 2a) or in
combination (Fig. 2b). Fresh-cut fruits and vegetables are very
critical to be processed. The cutting surface, consisting of
wounded tissues, is extremely susceptible to softening, brow-
ning, and discoloration phenomena [247] and, due to the re-
lease of the intracellular compounds, is exposed to microbial
and enzymatic attack [174]. However, fresh-cut fruits and
vegetables are a value-added convenience food in high de-
mand for consumers oriented toward natural and healthy prod-
ucts. Therefore, the use of the hurdle approach, as shown in
Fig. 2b, to extend their shelf life is fully justified and under-
standable, and most of the studies on the use of combined PL
and ECs have been targeted on fresh-cut fruit and vegetable
preservation, as discussed in the “Transmittance of PL
Through the Coating Layer” section.

Possible Interactions Between PL Treatment and
Coating Application

Effect of PL on Coating Properties

A first important aspect to consider in the combination of PL
with the EC is concerned with the possible modifications of
the coating when exposed to a PL treatment.

Previous studies have reported that the main modifications
observed in edible films subjected to PL can be related to the
occurrence of cross-linking reactions, due to photo-
polymerization effects, and film deterioration phenomena,
such as depolymerization and retrogradation, whose relative
extent depends strongly on film composition. For example,
taro starch-based films, characterized by a low amylose con-
tent, when exposed to PL, underwent mainly a physical mod-
ification through photo-polymerization, with the induced
slight cross-linking that improved starch–glycerol interactions
[248]. Conversely, cassava starch-based films, characterized
by high amylose content, did not show any evidence of cross-
linking but exhibited a measurable deterioration due to a
photodegradation effect [248]. Other authors reported that
PL-treated starch-based films exhibited an increase in crystal-
linity, reduced chain mobility, and formed more closed struc-
tures, independently of their amylose content [249, 250].
Furthermore, techno-functional characterization of PL-
treated starch-based films showed that, under the conditions
of maximum fluence permitted by the US FDA (12 J/cm2),
photodegradation reactions prevailed, independently on amy-
lose content of starch, and PL-treated films exhibited a signif-
icant deterioration of their properties, as shown by an increase
in contact angle, surface roughness, and crystallinity and a
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decrease in tensile strength, transparency, and water content
[251]. The degradative effect of PL treatment was observed
also for casein-based films, which exhibited a significant de-
terioration of mechanical properties, e.g., a reduction in
Young’s modulus and maximum stress values, and surface
characteristics, e.g., increase in wrinkle density and film opac-
ity [252]. In contrast, no measurable effects on mechanical
properties, such as tensile strength, elongation at break, and
Young modulus, were recorded for starch-based films used as
packaging for cheddar cheese, upon application of a PL treat-
ment at a fluence varying in the range from 1 to 12 J/cm2

[253].
These partially contradicting data derive from the limited

number of studies on the effect of PL treatment on edible films
and coatings, which prevents to draw general conclusions.
The analysis of the data reported for PL treatment of packaged
products can, however, provide some additional elements.
When a packaging material is subjected to PL, it is important
to monitor not only the physical and mechanical stability of
the films but also the potential chemical migration, which
might cause safety concerns [254]. Changes in mechanical
properties, such as reduced strength or extensibility, and im-
pact strength or cracking are generally reported, and the alter-
ation of the mass transfer properties, namely permeation, mi-
gration, and scalping, can take place [255]. However, these
phenomena are likely to occur upon intense PL treatments,
whereas in-package treatment carried out at milder conditions
does not cause any measurable effect on film properties [254].
For example, polypropylene films, treated with PL at 1.27

J/cm2 fluence, showed no significant changes in elastic mod-
ulus, yield strength, percent elongation at yield point, maxi-
mum tensile strength, and percent elongation at break [256].

In conclusion, due to the lack of available data, no predic-
tion can be made on the effect of PL on the techno-functional
properties of ECs, and preliminary experiments should be
carried out to verify their compatibility. In any case, the risks
associated with the migration of the coating components into
the foods are less critical than for polymeric films, where,
instead, potentially toxic compounds are present.

Transmittance of PL Through the Coating Layer

A second important aspect to consider is the transmittance of
PL through the coating layer. No specific studies are available
on ECs, and therefore, some considerations can again bemade
on the basis of the literature data concerning the PL treatment
of packaged products. As a general recommendation, a suc-
cessful in-package application of PL requires the selection of
proper packaging materials, characterized by high light trans-
missibility, in particular of the UV fraction. Therefore, poly-
meric matrices that may interfere with light absorption be-
cause of their intrinsic nature or because they contain addi-
tives, such as polyphenols or anthocyanins, should be avoided
[254].

As already mentioned, in PL treatments, UV light below
270 nm is of greatest relevance for the decontamination pro-
cesses [226]. Therefore, materials with a cutoff wavelength,
which is defined as the wavelength below which the light

Fig. 2 Process flow diagram of fresh-cut fruit and vegetable processing with the inclusion of edible coating application or pulsed light treatments,
individually (a) and combined (b)
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transmission is negligible (absorbance of 1.0), below 180 nm,
such as polyethylene (PE) and polypropylene (PP), are very
suitable for in-package applications, followed by polyvinyl
chloride (PVC) and polyamide (PA) with a cutoff of about
240 nm, polystyrene (PS) and polycarbonate (PC) with a cut-
off comprised between 270 and 280 nm, and polyethylene
terephthalate (PET) with a cutoff of 310 nm (all given for
10-μm-thick films [254]). Moreover, a higher degree of poly-
mer crystallinity, the presence of morphological inhomogene-
ity, and the inclusion of additives are also reported to affect
light transmittance [254, 257]. Previous studies have shown
that a 12-μm polyethylene film, a 48-μm polyamide/polyeth-
ylene/vinyl acetate-based copolymer, and a 60-μm
polyamide/polyethylene copolymer did not cause any reduc-
tion in the PL treatment (fluences of 0.175 and 0.35 J/cm2)
effectiveness against Listeria monocytogenes [258]. Similarly,
tests carried out on wrapped products showed that PL was
suitable for the treatment of packaged chicken frankfurters in
PP films [256] and chicken breast in different films (e.g., PP,
PVC, PET/PP) [259, 260].

In the case of edible films, it was demonstrated that PL,
with a fluence comprised between 9.2 and 12.3 J/cm2, can
pass through starch-based films without losing effectiveness,
as light in the range 200–1100 nm is not adsorbed [253].
However, some light absorption was recorded when the films
were loaded with antimicrobial compounds, such as sodium
benzoate and citric acid [253]. In the case of gellan gum-based
EC, enrichedwith apple fiber and used on fresh-cut apples, the
transmittance values of UV-A, UV-B, and UV-C radiation,
determined for a film thickness of 155.75 μm [261], were
99.3%, 99.0%, and 73.0%, respectively, showing that the
coating blocked a significant part of the incident UV-C radi-
ation [262].

The lack of sufficient data on the transmittance of PL
through ECs, especially as a function of layer composition,
thickness, and eventual presence of additives, prevents from
drawing a general conclusion also in this case. However, if the
contribution of PL treatment applied after the deposition of the
EC is to remove any eventual contamination that occurred on
the film surface, the issue of light transmittance becomes not
important. Instead, the protection of the food surface from PL
radiation might also be appreciated for some photosensitive
products.

Main Applications to Food Products

Based on the considerations reported in the “Combined Edible
Coating and Pulsed Light Treatments” section, it is compre-
hendible that, to date, only a limited number of studies have
focused on the utilization of PL in combination with the ap-
plication of ECs to inhibit microbial growth and to extend the
shelf life of food products.

Table 3 reports a survey of the published scientific papers
on combined treatments, presenting the main findings for dif-
ferent products treated and providing details on the formula-
tion and application of ECs, PL treatment conditions, and on
the sequence of the treatments.

Interestingly, most of the available data concern fresh-cut
fruits and vegetables, which represent, as already discussed,
an especially critical product characterized by a high added
value. Only one article treated the preservation of green beans,
which were considered more like a model food (for the com-
parison with other technologies, across different laboratories
[8, 9, 12]) than for the industrial interest for preservation
purposes.

In the data of Table 3, all the different strategies discussed
in Fig. 2 were investigated, with the prevalence of coating
application before PL treatment [8, 262–264, 266, 267] and
of coating application followed by packaging and PL treat-
ment on the packaged product [265, 268, 269],

The PL treatment carried out after coating application is
generally preferred when the starting material has a low initial
microbial load, as in the case of fresh-cut fruits and vegetables,
if properly processed, and resulted to provide a significant
contribution to extending the product shelf life, through the
preservation of quality parameters and the inhibition of micro-
bial growth. In addition, in some cases, it was also reported
that there was an increase in the polyphenolic content of food
products, as a consequence of the abiotic stress induced by PL
[266].

Remarkably, only two papers considered the application of
PL before coating application, in comparison with the appli-
cation of coating before PL treatment [264, 266]. The appli-
cation of PL before EC ensured a higher initial microbial
inactivation, as shown for fresh-cut mango slices, which can
be explained by the fact that the microbicidal effect of PL is
not screened by the presence of the coating, which both might
exert a protective role on microorganisms and reduce the
transmittance of radiation. Interestingly, during a 14-day prod-
uct shelf life, better quality parameters and microbial stability
were observed for the product treated with PL before the coat-
ing application [264]; however, the coating application before
PL treatment ensured a higher total phenolic content [266].

Conclusions and Perspectives

Consumers’ quest for natural products delivering a high level
of convenience has promoted the use of mild preservation
technologies for ensuring product safety and retaining the
quality attributes of fresh products. Within this frame, EC
and PL treatments have recently emerged as very promising
for food categories such as perishable high value-added prod-
ucts or fresh-cut fruits and vegetables.
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Table 3 Combined pulsed light and edible coating treatments, with details on pulsed light conditions, formulation and application of edible coatings,
the order of the treatments, and food storage conditions

Fresh produce PL
treatment
conditions

EC Order of
treatments

Storage
conditions

Effect of combined treatments Ref.

Film-forming
solutions

Method of application

Fresh green
beans

Fluence of
3–6–12
J/cm2

for each
side

1% chitosan +
0.05% mandarin
EO

Spraying for 5 s on
each side at 1.4 ×
10−5 Pa

1. Coating
2. PL

4 °C in sterile
pouches

The combination of PL treatment
and bioactive EC did not show
any synergistic or additive
antimicrobial effect against
L. innocua during storage,
with browning spots formation
on the samples. However,
treatment combination did not
affect the samples’ firmness
during storage nor the coating
integrity.

[8]

Fresh-cut apple Fluence of
12
J/cm2

0.5% gellan gum +
0.2% apple fiber
+ 0.6% glycerol
(1st solution)

2% calcium
chloride (2nd

solution)

Cross-linking dipping
for 2 min in each
solution, with drip
off for 1 min
between the two

1. Coating
2. PL

4 °C in the dark The use of coating incorporating
apple fiber followed by PL
treatment reduced softening
and browning and preserved
the antioxidant value of
fresh-cut apples. However, the
use of ECs reduced the extent
of surface decontamination by
PL.

[262]

Fresh-cut apple Fluence of
12
J/cm2

2% pectin + 0.7%
apple fiber +
1.5% glycerol
(1st solution) 2%
calcium chloride
(2nd solution)

Cross-linking dipping
for 2 min in each
solution, with drip
off for 1 min
between the two

1. Coating
2. PL

4 °C in the dark The combination of both
technologies led to a
significant reduction in the
counts of spoilage
microorganisms and higher
antioxidant activity values,
although an additive effect of
both treatments could not be
observed.

[263]

Fresh-cut
mango

Fluence of
8 J/cm2

2% sodium alginate
(1st solution)

2% calcium
chloride (2nd

solution)

Cross-linking dipping
for 2 min in each
solution

1. Coating
2. PL and vice

versa

4 °C in
polypropylene
trays

An additive effect on microbial
load reduction by combined
treatments was observed.
Moreover, the order in which
such treatments were
performed played an important
role in fresh-cut mango pres-
ervation. PL treatment follow-
ed by coatings ensured better
quality parameters and micro-
bial stability with minimal
quality deterioration through-
out storage.

[264]

2% DL-malic acid Dipping for 2 min

Fresh-cut
cantaloupe
melon

Fluence of
11.7
J/cm2

1% chitosan + 1%
glycerol +
0.025%
sunflower

Dipping for 2 min 1. Coating
2. PL on a

packaged
product

4 °C in a
polypropylene
bag

The combination of pectin,
sodium alginate, and gellan
gum coatings with PL
treatment was effective to
reduce fluid loss and retain
firmness and maintain the
desired headspace gas
composition throughout
storage. Moreover, a
combination of PL treatment
and alginate was the most
effective treatment condition
to extend the shelf life in terms
of microbiological quality. The
sodium alginate coating
adhered well to the surfaces of
samples and significantly
reduced fluid loss and
enhanced firmness compared

[265]

1% pectin/sodium
alginate + 1%
glycerol +
0.025% sun-
flower (1st solu-
tion)

2% calcium
chloride (2nd

solution)

Cross-linking dipping
for 2 min in each
solution, with drip
off for 1 min
between the two

0.5% gellan gum+
0.5% glycerol +
0.025%
sunflower (1st

solution)
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ECs loaded with active compounds protect food products
from deteriorative processes, such as oxidation, water loss,

and browning, and slow down or inhibit microbial growth,
while minimally affecting product appearance. PL treatments

Table 3 (continued)

Fresh produce PL
treatment
conditions

EC Order of
treatments

Storage
conditions

Effect of combined treatments Ref.

Film-forming
solutions

Method of application

to samples treated with PL
alone while retaining its
physicochemical and
nutritional quality.

2% calcium
chloride (2nd

solution)

Fresh-cut
mango

Fluence of
8 J/cm2

2% sodium alginate
(1st solution)

2% calcium
chloride (2nd

solution)
2% DL-malic acid

(3rd solution)

Cross-linking (1st and
2nd solutions) and
layer-by-layer coat-
ing deposition by
dipping for 2 min in
each solution

1. Coating
2. PL and vice

versa

4 °C in
polypropylene
trays

Both combined treatments seem
to enhance phenolic
compounds content while
preserving both antioxidant
capacity, phenolic compound
content, and color. Moreover,
the combination of coating
followed by PL treatment
enhances mangiferin content
by inducing a stress response
throughout storage days.

[266]

Fresh-cut
cucumber

Fluence of
4–8–12
J/cm2

2% chitosan +
0.03–0.08%
carvacrol EO

Dipping for 3 min 1. Coating
2. PL

25 °C in a safety
cabinet

The combination of the two
technologies resulted in a
strong synergistic effect, with
E. coli reduction when more
intense PL treatment was
combined with the coating
suspension containing 0.08%
carvacrol.

[267]

Fresh-cut
cantaloupe
melon

Fluence of
11.7
J/cm2

0–2% sodium
alginate + 0–2%
glycerol +
0.025%
sunflower oil (1st

solution)
2% calcium

chloride (2nd

solution)

Cross-linking dipping
for 2 min in each
solution, with drip
off for 1 min
between the two

1. Coating
2. PL on a

packaged
product

4 °C in a cooler box The combined treatment
increases the shelf life in terms
of microbiological quality and
reduces the fluid loss while
maintaining its
physicochemical and
nutritional quality. Therefore,
combined treatment is
necessary due to their
synergistic effect since PL
treatment contributed to the
increased microbiological
quality while coating targeted
on the improvement of
physical quality in fresh-cut
cantaloupe.

[268]

Fresh-cut
cantaloupe
melon

Fluence of
11.7
J/cm2

1.86% sodium
alginate + 1.47%
glycerol +
0.025%
sunflower oil (1st

solution)
2% calcium

chloride (2nd

solution)

Cross-linking dipping
for 2 min in each
solution, with drip
off for 1 min
between the two

1. Coating
2. PL on a

packaged
product

4 °C in a
polypropylene
bag

The combination of alginate
coating with PL treatment
maintains low lactic acid
concentration and retains total
aroma compound
concentration as storage time
increased. Overall, the
combination of alginate
coating and PL treatment was
effective to maintain the
fresh-like sensory quality of
fresh-cut cantaloupes with
minimal changes on sugar
contents, organic acid
contents, and total aroma
compound concentration.

[269]
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are fast and extremely effective for surface decontamination
and can be used to treat packaged foods. These technologies
can be coupled, in a hurdle approach, with the application of
PL treatments, either as a preliminary food decontamination
process, to reduce the initial microbial load, or after coating
application, and even better after food packaging, to inactivate
microorganisms contaminating the product after applying the
EC. The latter two options are appealing for those products,
for which the initial contamination level is not an issue (e.g.,
fresh-cut fruits and vegetables), and for which the sequence of
coating application and subsequent PL treatment might signif-
icantly extend the product shelf life.

A fundamental understanding of the possible synergistic or
antagonistic effects of EC–PL treatment combinations needs
to be better addressed. For example, the effects of PL treat-
ments on the physicochemical properties of the ECs have not
been fully elucidated. Positive effects are likely since the UV
components of the PL might cause cross-linking reactions in
the coating layer, improving its mechanical properties. Also,
the interference of ECs, especially if loaded with bioactive
compounds, on light transmission through the coating needs
to be better understood. If the PL treatment is carried out after
coating deposition, an eventual UV shielding effect might be
advantageous if the food surface is particularly light-sensitive,
for food protection and coating decontamination.

The process complexity and investment costs that the
combined use of EC application and PL treatments bring
along clearly represent a potential barrier to a wide indus-
trial application. However, the availability on the market
of small-scale pulsed light units and the possibility to
develop relatively simple batch systems for coating appli-
cation makes the proposed combined process especially
suitable for high value-added products, especially if pro-
duced in rural areas, where efficient logistics is not avail-
able. The scaling up of the combined process can be also
easily predicted, provided that suitable product conveyors,
allowing light penetration, and PL systems with flash
lamps in series, allowing to supply the right dose and
residence time, are designed and set up. Moreover, since
it is possible to apply the PL treatments in continuous
mode, this makes it feasible to have considerably high
product throughputs. To this purpose, some of the tech-
niques for EC application and PL apparatus already in use
for PL industrial applications eventually modified ad hoc
to process coated fruits and vegetables are already avail-
able and could be used for industrial proof-of-concept
tests. Once a few industrial applications have been devel-
oped, the economic feasibility for larger-scale applications
can then be better assessed to make this method for high
value-added convenience food preservation a means to
satisfy the consumer’s demand for milder processes and
increased use of natural ingredients while meeting their
quality and safety expectations.
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