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ABSTRACT 

The development of edible coatings to extend the shelf-life of fresh fruits and vegetables has been one of the most important goals of the 
post harvest industry. Thus, in the last decade, research efforts have resulted in edible coatings based on biodegradable biopolymers 
(proteins and polysaccharides) that at the same time allow the reutilization of some by-products of the food industry. Generally, these 
hydrocolloids are used as a support matrix since they show excellent film-forming ability, good mechanical properties and selective 
permeability to gases. However, due to their poor water vapour barrier properties, they have to be combined with lipid compounds in 
order to obtain composite edible coatings with the desired functional characteristics. Moreover, edible coatings for fruits and vegetables 
can be especially designed to incorporate and/or controlled release antioxidants, vitamins, nutraceuticals, prebiotics and antimicrobial 
agents. This work reviews the composition and main properties of formulations and commercial applications available at present, as well 
as their main effects on the quality and shelf-life of fruit and vegetables during storage. 
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INTRODUCTION 
 

The use of coatings for fresh fruits and vegetables is not a 
new concept. Fruits and vegetables are coated in nature by a 
natural waxy coating called cuticle, consisting of a layer of 
fatty acid-related substances, such as waxes and resins, with 
low permeability to water (Baldwin 1994). Wax was the 
first coating used in fruits, specifically, in citrus fruits. It is 
believed that they were applied to oranges and lemons at 
the beginning of the 12

th
 or 13

th
 centuries in China. Later on, 

in the 1930s, hot-melt paraffin waxes became commercially 
available as edible coatings for fresh fruits (Park 1999). 
Since the 1950s, carnauba wax and colloidal suspensions or 
emulsions based on oils or waxes dispersed in water, have 
been used to coat fresh fruits and vegetables. During these 
years, the most successful coatings have been lipid films 
made of acetylated monoglycerides, waxes (beeswax, car-
nauba and candelilla wax, paraffin and rice bran) as well as 
surfactants. These coatings are used to control the moisture 
transport and permeability of O2 and CO2 and to reduce sur-
face abrasion during fruit handling. 

The purpose of edible coatings for fruits and vegetables 
is basically to mimic or enhance their natural barrier, if 
already present, or to replace it in the cases where washing 
and handling have partially removed or altered it (Baldwin 

1994). Coatings could also improve the mechanical hand-
ling properties (helping to maintain the structural integrity 
of coated commodities), retain volatile flavour compounds 
and can carry food additives such as antimicrobial agents 
and antioxidants. Moreover, one of the most important ad-
vantages of this technology is the fact that they can be eaten 
together with the fruit, thus reducing packaging wastes. 

According to Guilbert et al. (1995), edible coatings may 
be defined as a thin layer of material that covers the surface 
of the food and can be eaten as part of the whole product. 
The composition of edible coatings must therefore conform 
to the regulations that apply to the food product concerned. 
Thus, the European Directive (Directiva 95/2/CE; Directiva 
98/2/CE) and the US Code of Federal Regulations (FDA 
21CFR172 2006) define edible coatings as those coatings 
that are formulated with food-grade additives. 

As stated by Kester and Fennema (1986), edible coa-
tings have to follow some functional requirements, which 
also depend on the kind of coated product and its metabolic 
pathways, such as: 
� Sensory properties: Edible coatings must be transparent, 

tasteless and odourless. 
� Barrier properties: Coatings must have an adequate 

water vapour and solute permeability and selective per-
meability to gasses and volatile compounds. 

® 
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Moreover, edible coating formulations have to contain 
safe and food-grade substances and the cost of the tech-
nology and raw materials from which coatings are produced 
have to be relatively low. 

It is important to remark that the effectiveness of a spe-
cific coating depends on the fruit and vegetable as well as 
the thickness of the coverage (Baldwin 1994). What is more, 
the impact of coating application can also differ among cul-
tivars of the same fruit or vegetable. 

This mini-review gathers some of the most recent infor-
mation on the application of edible coatings to fresh fruits 
and vegetables. 
 
COMPOSITION OF EDIBLE COATINGS FOR 
FRESH FRUITS 
 

The main components used in the formulation of edible 
coatings for fruits and vegetables are hydrocolloids (poly-
saccharides and proteins) and lipids. The characteristics of 
these compounds that are relevant in terms of edible coating 
technology are summarized in Table 1. 

Polysaccharides are the most common component of 
edible coatings for fruits (Kester and Fennema 1986; 
Krochta and De-Mulder Johnston 1997), as they are present 
in the major part of the commercially available formula-
tions. In spite of being highly hydrophilic and show high 
water vapour permeability, they have effective gas barrier 
properties. There is a wide variety of proteins that can be 
incorporated into the formulations of fruits such as soya and 
wheat proteins, corn zein, caseins and whey proteins. 

Casein and whey protein based edible coatings are 
attractive for food applications due to their high nutritional 
quality, excellent sensory properties, and good potential to 
adequately protect food products from their surrounding en-
vironment. Whey proteins have been intensively investi-
gated in the past decade. When a plasticizer is added, heat-
denatured whey proteins produce transparent and flexible 
water-based edible coatings with excellent oxygen, aroma, 
and oil barrier properties at low relative humidity. However, 
the hydrophilic nature of whey protein coatings causes them 
to be less effective moisture barriers. 

Proteins that are not water soluble such as corn zein and 

wheat gluten produce coatings that are not soluble, whereas 
soluble proteins produce coatings of varying solubility, de-
pending on the protein and the conditions of coating forma-
tion (Krochta 2002). For example, whey protein isolate pro-
duces totally water-soluble coatings but heat-denatured 
solutions of whey protein isolate produce coatings in which 
the protein is insoluble (Pérez-Gago et al. 1999). Moreover, 
protein solubility is considered to be dependent on pH so, 
this parameter should be taken into account during the for-
mulation and application of coatings. Only if soluble pro-
teins have been denatured, is solubility not considered as an 
important factor. 

Edible lipids used to develop edible coatings include 
beeswax, candelilla wax, carnauba wax, triglycerides, ace-
tylated monoglycerides, fatty acids, fatty alcohols, and suc-
rose fatty acid esters. 

Lipid-based edible coatings have a low affinity for 
water, which explains why they have low water vapour per-
meability. The latter is extremely important, as a great num-
ber of studies deal with the use of coatings on fresh fruits 
and vegetables to control their desiccation (Morillon et al. 
2002). 

Due to the fact that each hydrophobic substance has its 
own physicochemical properties, each lipid-based edible 
coating exhibits a variable behaviour against moisture trans-
fer. The polarity of lipid constituents has to be considered, 
that is, the distribution of electrostatic potentials on the 
molecules that depends on the chemical group, aliphatic 
chain length, and on the presence of unsaturation. As the 
carbon number increases (from 14 to 18), so does the mois-
ture barrier efficiency of fatty alcohols and fatty acids 
because the non-polar part of the molecule increases and 
does not favour water solubility in the film and thus, mois-
ture transfer (Morillon et al. 2002). 

The main disadvantage of lipid based coatings is their 
poor mechanical properties and thus, at present, research ef-
forts are focused on the design of composite coatings that 
are based on both, lipids and hydrocolloids in order to take 
advantage of the special functional characteristics of each 
group, diminishing their drawbacks (Greener and Fennema 
1994). Generally, lipids contribute to the improvement of 
the water vapour resistance, whereas hydrocolloids confer 

Table 1 Composition of edible films and coatings. 

Compound Source WVR /O2 and CO2 permeability Others E-Number Reference 

Polysaccharides      

Methylcellulose Cellulose Low/high GRAS1/flexible 461 Hernández 1994 

Hydroxypropyl- cellulose Cellulose Low/high GRAS/ flexible 463 Hernández 1994 

Hydroxypropyl methylcellulose Cellulose Low/high GRAS/ flexible 464 Hernández 1994 

Carboximethylcellulose Cellulose Low/high GRAS/ flexible 466 Hernández 1994 

Dextrin Starch High/moderate Dries slowly  Greener and Fennema 1994 

Alginate Algae extracts Low/moderate Fragile 401-405 Glicksman 1983 

Chitosan; N,O-carboxymethyl 

chitosan 

Crustacean 

shells 

Moderate/high GRAS 

antimicrobial 

 Tharanathan and Kittur 2003 

Pectin Fruit Peels Low/high GRAS 440 Liu et al. 2006 

Carrageenan Algae extracts Low/moderate Fragile 407 Greener and Fennema 1994 

Gum Arabic Acacia tree Low/moderate Good adhesion 414 Greener and Fennema 1994 

Guar gum Seed extracts Low/moderate Firming agent 412 Greener and Fennema 1994 

Xanthan gum Xanthomonas 

campestris 

Low/moderate Good adhesion 415 Greener and Fennema 1994 

Proteins      

Zein Corn Low/high GRAS  Koelsch 1994 

Gluten Wheat Solvent and pH dependent/ high Fragile  Guilbert 2000 

Soy Soybean Low/low Flexible  Cho and Rhee 2004 

Whey protein Milk Moderate/high Flexible  Maté et al. 1996 

Casein Milk Moderate/low Brittle  Dangaran et al. 2006 

Lipids      

Shellac Insects High/high GRAS 904 Hagenmaier 2000 

Beeswax Beeswax High/low GRAS 901 Hagenmaier and Baker 1997 

Carnauba wax Plant exudates High/low GRAS 903 Martin-Polo et al.1992a, 1992b

Candelilla wax Plant exudates High/low GRAS 902 Hagenmaier and Baker 1997 

Fatty acids Plant or animal 

material 

According to type/low GRAS 471 Martin-Polo et al. 1992a, 1992b

1Generally Recognize as Safe 

 

33



Development of edible coatings for fruits and vegetables. Vargas et al. 

 

selective permeability to O2 and CO2, durability and struc-
tural cohesion and integrity (Krochta 1997). 

Composite coatings can be created by the subsequent 
deposition of different layers or can be made by the deposi-
tion of a single layer of material. Bilayer coatings are formed 
in two stages: in the first stage, the layer of polysaccharide 
or protein is cast and dried and in the second one, the lipid 
layer is applied (Krochta 1997). As an example, Debeaufort 
et al. (2000) developed bilayers by adding a mixture of 
lipids (paraffin oil, paraffin wax or a mixture of hydroge-
nated palm oil and triolein) into a methylcellulose layer. 
Wong et al. (1994) coated apple cubes with double layers of 
polysaccharides (cellulose, carrageenan, pectin or alginate) 
and acetylated monoglyceride. Nevertheless, in monolayer 
composite edible coatings, the lipid is dispersed in the hydro-
philic phase of an emulsion (Shellhammer and Krochta 
1997). In this sense, Bertan et al. (2005) used stearic and 
palmitic acid to allow the incorporation of a hydrophobic 
exudate into a gelatine-based coating. This mixture was 
emulsified using triacetin as plasticizer. Bosquez-Molina et 

al. (2003) obtained emulsified coatings by mixing mesquite 
gum (structural matrix) and a combination of some lipids 
(candelilla wax, mineral oil, oleic acid or beeswax). 

Although emulsified coatings are less efficient than 
bilayers due to the non-homogeneous distribution of lipids, 
they have received more attention because they need only 
one drying step instead of the two needed for bilayer films, 
and they can be applied on food at room temperature. More-
over, both their hydrophilic and lipophilic nature allow their 
adhesion onto any support whatever its polarity and exhibit 
good mechanical resistance (Quezada Gallo et al. 2000). 

Minor components that can be found in coating formu-
lations include plasticizers such as glycerol and polyethy-
lene glycol, and acids or basis to control the pH (lactic acid, 
acetic acid, etc.) of the film-forming solution. In addition, 
as shown in Table 2, coatings can incorporate in the formu-
lations chemical preservatives and antimicrobial agents 
such as sodium benzoate, acetic, lactic, malic or sorbic acid, 
lysozyme, nisin, some essentials oils and spice extracts or 
chitosan  (Diaz-Sobac et al. 1996; Brul and Coote 1999; 

Table 2 Application of edible coatings to fresh fruits and vegetables  

Type of 

coating 

Composition Application Main results References 

Polysaccharide Chitosan and Tween 80 Fruits (strawberry, 

raspberry, sweet cherry, 

tomato, table grape, 

litchi, citrus, peach, 

Japanese pear; kiwi fruit, 

longan); vegetables 

(carrot, lettuce) 

Reduction of fungal infection, 

retention of fruit firmness, 

extension of shelf-life 

El Gaouth et al. 1991; Du et al. 1997; 

Zhang and Quantick 1997, 1998; Li and Yu 

2000; Jiang and Li 2001; Romanazzi et al. 

2002, 2003; Devlieguere et al. 2004; Han et 

al. 2004; Park and Zhao 2004; Caro and 

Joas 2005; Joas et al. 2005; Kang et al. 

2005; Park et al. 2005; Chien et al. 2007 

Polysaccharide Alginate 

Alginate and glycerol 

Fruits (apple); vegetable 

(mushroom, onion) 

Extension of  shelf-life, 

reduction of moisture loss and 

better appearance 

Nussinovitch and Kampf 1993; Hershko 

and Nussinovitch 1998a, 1998b; Falcão-

Rodrigues et al. 2007 

Polysaccharide Cactus mucilage extract 

and glycerol 

Fruits (strawberry) Extension of shelf-life 

maintaining sensory properties 

Del-Valle et al. 2005 

Polysaccharide Aloe Vera L. gel Fruits (sweet cherry, table 

grape) 

Extension of storability Valverde et al. 2005; Martínez-Romero et 

al. 2006 

Protein Soy protein, glycerol, 

malic acid, lactic acid 

Fruits (apple) No significant effect on sensory 

quality 

Eswaranandam et al. 2006 

Protein-

polysaccharide 

CMC1, WPI2, caseinates 

and glycerol 

Fruits (strawberry) Reduction of mold infection Vachon et al. 2003 

Polysaccharide MC3 and glycerol Fruits (strawberry, 

avocados) 

Delay in senescence Maftoonazad and Ramaswamy 2005; Park 

et al. 2005 

Polysaccharide Medium or high amylase 

content starch and glycerol 

Fruits (strawberry) Delay in senescence and 

improvement of overall 

organoleptic conditions 

García et al. 1998a, 1998b 

Polysaccharide MC, lauric acid, stearic 

acid, palmitic acid and 

PEG4 

Fruits (strawberry); 

vegetables (bean) 

Reduction of weight loss Ayranci and Tunç 1997 

Polysaccharide Chitosan, MC, Tween 80 Fruits (strawberry) Delay in senescence Vargas et al. 2006b 

Polysaccharide

-lipid 

Pullulan, non-ionic sucrose 

fatty acid ster and sorbitol 

Fruits (strawberry, kiwi) Reduction in internal O2, firmness 

and colour retention; increase in 

internal ethylenene in kiwi fruits

Diab et al. 2001 

Polysaccharide

-lipid 

Maltodextrin, CMC, 

propylenglicol, fatty acid 

sters 

Sodium benzoate 

Fruits (mango) Extension of postharvest storage Díaz-Sobac et al. 1996 

Polysaccharide

-lipid 

HPMC5, shellac, stearic 

acid and glycerol 

Fruits (plum) Effects were only noticeable at 

long term storage 

Pérez-Gago et al. 2003 

Polysaccharide

-lipid 

MC, PEG, stearic acid, 

citric acid, ascorbic acid 

Fruits (apricot); 

vegetables (green pepper)

Decrease in moisture loss Ayranci and Tunc 2004 

Polysaccharide

-lipid 

Chitosan, oleic acid, Tween 

80 

Fruits (strawberry) Delay in senescence and fungal 

infection 

Vargas et al. 2006a 

Polysaccharide

-lipid 

CMC, paraffin wax, 

beeswax, soybean oil, oleic 

acid and sodium oleate 

Fruits (mandarin, peach, 

pear) 

Delay in ascorbic acid loss of 

mandarins and extension of shelf-

life 

Togrul and Arslan 2004a, 2004b 

Protein-lipid WPI, sodium caseinate, 

beeswax and glycerol 

Vegetables (green Bell 

pepper) 

No significant effect on moisture 

loss, respiration rate or colour 

Lerdthanangkul and Krochta 1996 

Protein-lipid Wheat gluten, glycerol, 

estearic acid, palmitic acid 

and beeswax 

Fruits (strawberry) Lipids reduced weight loss and 

preserved mechanical properties

Tanada-Palmu and Grosso 2005 

1Carboxymethyl cellulose; 2Whey Protein Isolate; 3Methylcellulose; 4Polyethylene glycol; 5 Hydroxypropyl methylcellulose 
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Outtara et al. 2000; Park et al. 2004; Pranoto et al. 2005; 
Zivanovic et al. 2005; Rojas-Grau et al. 2006; Seydim and 
Sarikus 2006; Vargas et al. 2009), as well as nutraceutical 
compounds (Park and Zhao 2004). 
 
POSTHARVEST LIFE OF COATED FRUITS AND 
VEGETABLES 
 

Harvested fruits and vegetables are considered to be living 
organisms because their metabolical function continues 
during postharvest storage (Kays 1991). The impact of pro-
duction practices (harvesting techniques, packaging, hand-
ling, etc.) on the quality of fruits and vegetables can be ex-
plained by changes in their metabolism, which coincide 
with the degree of stress suffered. Thus, the extension of the 
shelf-life of fresh fruits and vegetables is mainly based on 
the knowledge of fruit and vegetable physiology. In general, 
the higher the product’s respiration rate, the shorter its sto-
rage life. Thus, one possibility to extend the shelf life of 
these products is to minimise their respiration rate by, for 
example, adding a barrier around the product to modify the 
composition of the storage gaseous atmosphere to which 
postharvest products are exposed. In most products, when 
there is a restricted air flow, the equilibrium is shifted 
towards a decrease in internal oxygen (O2) and an increase 
in carbon dioxide (CO2). As the internal oxygen concentra-
tion decreases, so does the respiration until a critical O2 
concentration (extinction point) is reached. At very low 
oxygen concentrations, the respiration rate begins to in-
crease, aerobic respiration is blocked and anaerobic fermen-
tation begins. However, the products are usually stored 
under low O2 atmospheres (e.g. 1 to 3 %) to diminish the 
respiration rate and to increase the shelf-life of most cold-
stored fruits and vegetables. On the other hand, an increase 
in the external carbon dioxide concentration limits the for-
ward movement of the respiratory pathway, resulting in a 
decrease in the respiration rate. This is the basis of the tech-
nology of storage under controlled atmospheres. 

Edible coatings could also be applied to obtain similar 
effects to the storage under controlled or modified atmos-
pheres. So, surface coatings can delay the ripening of fruits 
by modifying their internal atmospheres (decreasing O2 
and/or increasing CO2, as well as inhibiting ethylene bio-
synthesis and action) acting on skin permeance to gases. 
This effect is mainly achieved by blocking a greater or les-
ser proportion of the pores on the fruit surface (Hagenmaier 
and Baker 1995; Banks et al. 1997) and it might be expec-
ted that commodities with different skin characteristics 
might have very distinct types of interactions with a surface 
coating. 
 
APPLICATION OF EDIBLE COATINGS TO FRESH 
FRUITS AND VEGETABLES 
 

Research and development efforts are leading to an im-
provement in the functional characteristics of the coatings, 
which depend on the properties of the fruit to be preserved 
or enhanced. These can be achieved by an optimum and 
precise control of gas permeability, texture and colour chan-
ges by means of quantitative or qualitative changes in coa-
ting formulation. 

For the optimization of surface coatings, it is important 
not to overlook the variable nature (variability among culti-
vars of the same commodity and among fruit of the same 
cultivar) and the barrier properties of the commodity´s skin 
(Amarante and Banks 2001). Moreover, it is also essential 
to know the total solid content in the coating formulation 
(related to the thickness of the film) so that coated com-
modities may not have an excessive restriction of gas ex-
change through the skin, resulting in anaerobiosis and fur-
ther development of off-flavors. Knowing the wettability of 
the coatings is also of particular importance, since it is a 
parameter that defines the ability of the coating to be uni-
formly distributed on the surface to cover. 

The level of modification of the internal atmosphere re-

sults mainly from the interaction among the skin, coating 
and respiration rate of the commodity. Thus, direct mea-
surement of the commodity’s permeance to gas exchange 
under controlled environmental conditions should be pre-
ferred for the selection and optimization of surface coatings 
(Amarante and Banks 2001). As regards the control of mois-
ture transfer, water vapour resistance (WVR) is a parameter 
that allows us to determine whether the coating has the ex-
pected water barrier properties when applied to the pro-
duct’s surface. 

Fig. 1 shows water vapour resistance (WVR) and sur-
face solid density (SSD) of strawberries coated with an 

emulsified coating based on Sugin and different concentra-
tions of HPMC, where the effect of the increase in SSD on 
the increase in the WVR of coated samples is pointed out. 

Edible coatings can have several different effects on the 
quality of coated fruits, since there are many mechanisms 
involved. These mechanisms include the controlled mois-
ture transfer between the fruit and the surrounding environ-
ment, the controlled release of chemical agents like antimic-
robial substances, flavour compounds and antioxidants; the 
reduction of the internal oxygen partial pressure with a dec-
rease in fruit metabolism, as well as some kind of structural 
reinforcement (Shaidi et al. 1999). As shown in Table 2, 
some of the effects that have been observed in coated fruits 
during storage are a decrease in weight loss (Baldwin et al. 
1999), a delay in the occurrence of enzymatic browning 
(McHugh and Senesi 2000; Le Tien et al. 2001), a reduction 
in the respiration rate (El Gaouth et al. 1991; Wong et al. 
1994; Vargas et al. 2006a) and, in general, a significant ex-
tension of fruit shelf-life. 

Figs. 2A and 2B show the respiratory pattern of straw-
berry samples coated with Sugin and different contents of 
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HPMC. As can be observed, coating application led to a 
significant decrease in the respiration rate of strawberries, 
especially at the end of cold storage. Respiration quotient 
was near to one in all cases, thus indicating that the fermen-
tation process has not been promoted by coating application. 

The fact that coatings delay tissue senescence, that has 
been pointed out by several authors (see Table 2), can be 
evaluated from the changes in the mechanical response of 
coated and non-coated samples during storage. Fig. 3 shows 
the compression profiles of a fresh strawberry together with 
the profiles of coated and non-coated samples after 9 days 
of cold storage. After this period of cold storage, coated 
strawberries presented a mechanical response which was 
more similar to the fresh ones, while the non-coated ones 
led to a flatter curve, typical of softer tissues. 

Finally, the sensory properties of the coatings should 
also be evaluated, through the external appearance (colour, 
brightness, opacity, etc.) and flavour of the products, once 
coated. Coated fruits and vegetables usually become less 
aromatic, as has been observed in the case of strawberries 
(Vargas et al. 2006a, 2006b). The major limitation comes 
when coatings modify the optical or colour attributes of the 
product, leading to a poor appearance. Nevertheless, some 
coatings are not visually perceived and can impart proper 
properties to the product, such as brightness. 
 
FUTURE OF THE EDIBLE COATINGS 
TECHNOLOGY 
 

In the future, the application of edible coatings will be one 
of the most effective methods to extend the commercial 
shelf-life of fresh fruits and vegetables. Nowadays, although 
applying coating technology to fruit and vegetable products 
is still scarce, in the next years it is expected to spread 
through all kind of products, fresh or treated (e.g. dried, re-
hydrated, candied), thus substituting the traditional pack-
aging materials and making the packaging process more en-
vironmentally friendly (as less waste materials are gene-
rated). Table 3 shows some of the commercial formulations 
of edible coatings currently available on the market for 
fresh fruits and vegetables. These coatings consist of dif-
ferent mixtures of polysaccharides and lipid compounds and 
they have been applied to a wide variety of fruits and vege-
tables. 

The trend will focus on the development of effective de-
livery coatings with bioactive components as they would be 
technologically developed to extend the shelf-life of pro-
ducts and to better control the safety and quality of food. 
These coatings would act by releasing the novel bioactive 
components like vitamins, nutraceuticals, enzymes, pre- or 
probiotics into the food matrix throughout time. Initially 
these components will mainly act on the surface of the pro-
duct, later diffusing inside the matrix to a different extent, 
depending on the mass transport properties of each com-
pound. Taking into account the current trends in consumer 
preferences (towards fresh and additive-free food), these 
bioactive ingredients will be preferably natural components. 

Recent studies point to the application of micro and 
nanotechnologies to develop coatings which incorporate 
micro or nanoencapsulated compounds that are released by 
pH, temperature or osmotic changes in the medium. Encap-
sulation will protect bioactive ingredients in a form that will 
be biologically active when the food is eventually consumed. 
Thus, the biological activity will be maintained when they 
are introduced into a complex food system (Weiss et al. 
2008). Nanocomposite films incorporating nanosized clay 
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materials as a film forming material and electrodeposition 
techniques to build multilayer coatings (Vargas et al. 2007, 
2008) will also be further studied and developed to improve 
and better control the coating properties. 
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APPENDIX 
 

 

 
  

MATERIALS AND METHODS (Figs. 1, 2, 3) 

 

Materials 

Strawberries (Fragaria x ananassa) cv. ‘Ventana’ (Palos de la Frontera, Huelva, Spain) were bought in a local market and coating experiments 

were carried out on the same day. Strawberries of uniform size, shape and colour and without any signs of mechanical damage or fungal decay, 

were selected and washed in 10 mg/L sodium hypochlorite solution prior to coating. Hydroxypropyl methylcellulose (Methocel E-15 FG, Dow 

Chemical Company, Midland, USA), Sugin 471/PHK-40 (Degussa Texturant Systems S.A., Barcelona, Spain), and distilled water were used to 

obtain the film-forming solutions. 

 

Preparation of the film-forming solutions and coating application 

Three film-forming solutions were obtained using Hydroxypropyl methylcellulose (HPMC) at 1.5, 3.0 and 4.5% (w/v) and Sugin at 3.0% (w/v). 

Sugin was melted and solved in distilled water at 65°C while HPMC was dispersed and dissolved in 150 mL deionised water at 90°C with 

constant stirring. After 10 min, melted Sugin was added to the HPMC solution and the mixture was stirred for 10 min. The mixture was then 

emulsified using a rotor-stator homogenizer (Ultraturrax DI 25 basic-Yellowline, Janke and Kunkel, Staufen, Germany) at 12500 rpm for 10 min. 

Afterwards, the mixture was allowed to cool to room temperature (25°C), maintaining slow stirring. Finally the total solid concentration in 

formulation was adjusted by adding the required amount of water. 

Selected strawberries were dipped in the film-forming solutions for 1 minute. Control samples were immersed in distilled water. Samples 

were dried by natural convection for 1 hour at 20°C and were packed in 750 mL perforated PET boxes ( 10 strawberries per box), to avoid 

further atmosphere modifications. Boxes were kept at 4 ± 1°C in an incubator Hot-Cold M4000668 (P-Selecta, Barcelona, Spain). 

 

Surface solid density and water vapour resistance 

Mean value of coating thickness was calculated in ten samples of each formulation by means of the quantification of the surface solid density 

(SSD) (Eq. 1). Average sample area (As) was estimated considering strawberry geometry as a cone with a known height (measured in triplicate 

using a digital calliper) and volume (measured using a pycnometer). Samples were weighed before and after coating, to determine the mass of 

coating solution adhered to strawberry surface (MFa). Mass fraction of solids (Xs) of each film-forming solution was also considered to calculate 

SSD. 

In order to determine water vapour resistance, coated and uncoated samples were kept in desiccators where a 75% RH was generated by 

using saturated NaCl solution. Desiccators were kept in an incubator Hot-Cold M4000668 (P-Selecta, Barcelona, Spain) at 5°C. Water vapour 

resistance (WVR) was calculated using a modified equation of the First Fick Law (Eq. 2), as described by Avena-Bustillos et al. (1994). 
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where J is the slope of the weight loss curve in stationary conditions, As sample area, Pwv saturated vapour pressure, T absolute temperature R, the 

universal constant of gasses, and aw water activity of samples, which was measured by means of a dew point hygrometer (Aqua Lab CX3, 

Decagon Devices Inc., Pullman, USA) at 25°C. 

 

Mechanical properties 

Mechanical properties were measured in ten samples of each formulation by using a Texture Analyser TA-XT-plus (Stable Micro Systems, Surrey, 

UK), with a 500 N load cell, using a 10 mm diameter cylindrical probe. Strawberry samples were cut longitudinally and 95% compressed at a 0.2 

mm/s deformation rate. Force and distance at the rupture point were used as mechanical parameters. 

 

Respiration rate 

In order to measure the respiration rate a closed system was used. At each time of storage, strawberry samples (about 150 g) were placed in 0.847 

L hermetic glass jars with a septum in the lid for sampling gas in the headspace at different times. The jars were stored in an incubator (P Selecta, 

Hot-Cold M 4000668) at 5°C. Gas sampling was carried out every 30 minutes by means of a needle connected to a gas analyser (CheckMate 9900 

PBI Dansensor, Ringsted, Denmark). Three replicates were performed for each formulation. 

Experimental points were considered in the time range where a linear relationship was observed between gas concentration and time. This 

means that no changes in the respiration pathway of the samples occurred in this period and so changes in the headspace composition did not 

produce notable alterations in their metabolism. Respiration rate (Ri, mL·kg-1h-1) of the samples in terms of CO2 generation and O2 consumption 

was determined from the slope of the fitted linear equation, where yi
t is the gas concentration (%O2, %CO2) at time t, i being O2 (Eq. 3) or CO2 

(Eq. 4), M is the mass of samples (kg) and V the headspace volume (mL). 
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