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Abstract: These days, consumers are increasingly “nutritionally aware”. The trend of “clean label” is
gaining momentum. Synthetic additives and preservatives, as well as natural ones, bearing the E
symbol are more often perceived negatively. For this reason, substances of natural origin are sought
tfor replacing them. Essential oils can be such substances. However, the wider use of essential oils in
the food industry is severely limited. This is because these substances are highly sensitive to light,
oxygen, and temperature. This creates problems with their processing and storage. In addition,
they have a strong smell and taste, which makes them unacceptable when added to the product.
The solution to this situation seems to be microencapsulation through complex coacervation. To
reduce the loss of essential oils and the undesirable chemical changes that may occur during their
spray drying—the most commonly used method—complex coacervation seems to be an interesting
alternative. This article collects information on the limitations of the use of essential oils in food and
proposes a solution through complex coacervation with plant proteins and chia mucilage.
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1. Introduction

Consumer interest in foods with high nutritional value, longer shelf life, and health
benefits (functional food—FF) is growing year by year. This leads to the restriction of
the use of preservatives and synthetic food additives in favor of bioactive substances of
natural origin, e.g., from fruits, vegetables, and other plant sources. However, many of
them are characterized by high instability—they are prone to oxidation, which is intensified
by light, temperature, moisture, and changes in pH. The fashion for “healthy eating” and
concern for the natural environment make food producers try to reduce or eliminate the
addition of synthetic food preservatives and make them interested in technologies that
allow the stabilization of bioactive substances to maintain their functional properties during
processing and storage and to modify their physical properties to facilitate dosing [1–3].

2. Types of Functional Food

Food products known as functional, bioactive, enriched, modified, FOSHU (Foods
for Specified Health Use), nutraceuticals, or food designed for the specific needs of the
organism have appeared on the global market. The richness of the terminology used results
from the variety of products classified as such food [4].

In the US, the Food and Drug Administration (FDA) defines functional food as food
and its components that provide health benefits beyond their basic function. Similarly, in
Canada, functional food is understood as food that, in addition to having basic nutritional
functions, has a proven beneficial effect on health and/or reduces the risk of chronic
diseases. In turn, in the European Union, since 1999, there has been a definition according to
which functional food exerts a beneficial effect on one or more bodily functions in addition
to its nutritional effect. The effect is to improve health and well-being and/or reduce the
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risk of diseases. It must resemble conventional food and it cannot be tablets, capsules, or
dietary supplements. In addition, it is a requirement to prove the beneficial effect on the
human body and the statement: nutritional and health. The concept of functional food is
associated with the term enriched food, but these are not identical concepts. Fortified food
means adding one or more nutrients to a food, whether or not they are naturally present in
the food, e.g., yogurt with probiotics and margarine with phytosterol [4,5].

Nutraceuticals are an interesting concept. This term means ingredients isolated from
food, dietary supplements, and herbal products that are used individually or combined
to use their synergistic effects. They include biologically active substances with proven
health-promoting properties, e.g., dietary fiber, proteins, lactic acid bacteria, antioxidant
substances, etc. [4].

3. Trends among Consumers

Consumers nowadays are much more interested in information about the food prod-
ucts’ production method and ingredients production. Some production methods are
perceived as less “natural”, and some food ingredients are perceived as “unhealthy” and
“foreign” (i.e., artificial additives). This phenomenon, often referred to as the “clean label”
trend, prompts the food industry to replace synthetic agents widely used in food with
ingredients of natural origin, e.g., of plant origin [6].

Preservatives are used to prevent or inhibit unfavorable changes such as microbi-
ological (growth of bacteria or fungi), chemical (oxidation, non-enzymatic browning),
and biochemical (inactivation of certain enzymes, metabolites, and components necessary
for the development of microorganisms), whereas food additives are substances that are
added to food products to modify or improve their sensory qualities [2,7,8]. Unfortunately,
more and more examples show that the consumption of artificial (chemical) additives and
preservatives can lead to allergies, food poisoning, or the development of cancer. The most
famous additives causing allergic reactions are sulfites (e.g., sulfur dioxide and sodium
sulphite), which are traditionally used to preserve fruit and vegetable products. In addition,
the addition of SO2 is a longstanding and common practice utilized to preserve the quality
of wine (prevention against oxidation and browning) [9]. The significant reduction in
vitamin B1 absorption caused by these compounds is responsible for the development of
allergic reactions. Carmine and Cochineal Red are the other best-known food additives
to cause allergies. These red pigments come from the bodies of female Dactylopius coccus,
insects that grow on cochineal cacti (Central and South America, Southern Europe, and
India). These dyes are widely used as colorants in processed foods and beverages. Most
often it can be found in burgers, sausages, red alcohols, soft drinks, sweets, and fruit
yogurts [10–13].

To meet the demands of consumers, food producers have taken great efforts to elim-
inate commonly used additives and preservatives from their products. In addition in
recent years, more and more researchers have been developing methods that enable the
use of natural substances for this purpose. For example, the use of antioxidants such as
butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and tert-butyl hydro-
quinone (TBHQ) is not as popular in recent decades due to raised concerns about their
adverse effects on human health. Even though it is believed that those substances are
effective against oxidation reactions, substances of natural origin are sought for replacing
them [14,15]. This, along with the traditional popularity of consuming natural products,
has encouraged not only food producers but also scientists to explore the applicability
and effectiveness of natural compounds such as essential oils as alternatives to harmful
chemical antioxidants in food products [15]. Compounds derived from natural sources
have great potential to extend the shelf life of food due to their antimicrobial properties
against foodborne pathogens. However, this is not their only advantage. These types
of substances can provide additional health benefits since they are very often bioactive
compounds with antioxidant properties [9,10,12,13].
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4. Essential Oils—Natural Preservatives and Functional Additives?

Essential oils (EO) are called essential in the sense that it contains the essence of the
aroma of the plant it is derived from, whereas the term “oil” is used because it contains
the oil-soluble chemicals in the plant, not only because it feels oily. EOs are also known
as volatile oils, ethereal oils, or aetheroleum. Essential oils are secondary metabolites
synthesized by oil-yielding plants. EOs are multi-component, hydrophobic mixtures
containing up to several hundred volatile compounds (usually 100 to 200 chemicals per
essential oil) in different concentrations. Essential oils can be characterized by two or
three major components at relatively high concentrations (20–70%), which determines the
biological properties of EOs (Figure 1). The main ingredients chemically are terpenes,
aldehydes, ketones, phenols, alcohols, and others [16–18]. This complex chemistry gives
them their therapeutic properties and explains why different essential oils may have
overlapping effects [1,2,19,20]. Some examples of major components can be cited—carvacrol
and thymol represent, respectively, 30% and 27% of the composition of EO from oregano
(Origanum compactum). EOs from coriander (Coriandrum sativum) have in their constitution
65% linalool. Menthol (59%) and menthone (19%) are found in EOs from peppermint
(Mentha piperita) [21,22].
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Essential oils are characterized by having many pharmacological properties, including
anti-inflammatory, antispasmodic, sedative, analgesic, and digestive-supporting properties.
Due to their very rich and diverse chemical composition, one essential oil can have several
positive effects. For example, rosemary essential oil has the effect of improving digestion,
enhancing appetite, and being anti-flatulence. In addition, they have well-documented
antimicrobial activity against bacteria, yeasts, and molds [1–3]. Again, thanks to its complex
composition, one essential oil can effectively inhibit the growth of both bacteria and fungi.
The same rosemary EO inhibits the growth of Gram-positive (Enterococcus spp.) and
Gram-negative (Salmonella spp.) bacteria, yeasts (Candida spp.), and molds (Penicillium
spp.) [23–25]. For this reason, EOs can be an alternative to the commonly used food-
preservation agents.

This is indicated by studies conducted, inter alia, by Coimbra et al. [26]. The team
tested the applicability of thyme essential oil (Thymus zygis) to Listeria monocytogenes
in four food matrices (chicken juice, lettuce leaf model, ultra-high-temperature (UHT)-
treated skim, and whole milk). EO inhibited the growth of L. monocytogenes 13305 in a
model medium with chicken juice and lettuce. A significant reduction in the number was
observed for the two highest concentrations of EO tested from 4 to 14 days for chicken juice
and from 2 to 14 days for the model medium with lettuce. Research on the possibility of
using essential oils for preserving food products was also conducted by Shah et al. [27].
Thymol concentrations used in apple cider resulted in complete bacterial inhibition or were
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bacteriostatic at 35 ◦C for E. coli and 32 ◦C for L. monocytogenes. Attempts have been made
to use essential oils also for preserving such products as romaine lettuce, iceberg lettuce,
mature bunched spinach, and baby spinach [28], snacks based on meat and seafood [29–31],
juices [32], milk, yogurts, and other milk products [33–35] or chocolates [36], but also fruits
or vegetables coated with edible coatings with the addition of EO [37,38].

Nanodispersion of eugenol (the basic ingredient of clove oil) in whey protein isolate
and maltodextrin did not change its antimicrobial properties against E. coli O157: H7 and
Listeria monocytogenes. However, nanodispersion allowed eugenol to be evenly distributed
in the milk at concentrations above the solubility limit of the antimicrobial agent, which
improved the antimicrobial efficacy in milk. Thus, nano-delivery systems hope to reduce
the amount of antimicrobials without altering the turbidity of food products [33].

The stability of meat products during storage is a primary factor that is compromised
by lipid oxidation and microbial growth. Hemmatkhak et al. [39] researched the use of
active papers soaked in a nanoemulsion or Pickering emulsion containing cumin seed
essential oil (CSEO). The effect of active papers on the quality and shelf-life of beef ham-
burgers stored at 4 ◦C for 7 days and at −18 ◦C for 60 days was investigated. Research
results indicate good antioxidant and antimicrobial activity of cellulose papers impreg-
nated in CSEO capsules. Packing beef burgers in contact with the produced active papers
had a significant effect on extending the shelf life of hamburger samples by significantly
reducing TBARS, the total number of mesophilic bacteria and psychrophilic. Furthermore,
the sensory characteristics of the hamburgers did not changed.

It also seems important that many essential oils are on the Generally Recognized As
Safe (GRAS) list published by the US Food and Drug Agency (FDA). Among the EOs
that are approved for use in food are clove, rosemary, oregano, basil, mint, lavender, sage,
cinnamon, and laurel [15,40,41]. Considering the above, essential oils can be not only a
natural replacement for artificial preservatives but also a functional additive.

5. Microencapsulation as a Solution for EOs Application Limitations

However, there are limitations to the use of pure essential oils in food products. First of
all, their characteristic strong aroma and taste can cause undesirable organoleptic changes.
In addition, EOs are very sensitive to the influence of the external environment —light,
oxygen, and temperature. Other limitations are their lipophilic nature and hence low
water solubility, low bio-accessibility, and bio-availability [18,42]. These problems can be
solved by microencapsulation—an effective method of preserving the quality of sensitive
substances. Microencapsulation is defined as a method of coating or encapsulating a given
material or mixture of materials within the shell of a specific material or system. The
substance that is encapsulated is called “active”, “encapsulate”, “payload”, or “core” and
constitutes 30–99% of the total weight of the capsule. The core material can be a single
substance or a mixture of solid, liquid, and gaseous forms. The enclosing polymer is called
“shell”, “wall”, “matrix”, or “coating” [42–44]. The wall material is usually insoluble and
non-reactive with the core material. The wall can be made of gums, proteins, lipids, and
synthetic polymers. The wall material is generally applied as a liquid (solution, suspension,
or molten material) to permit enrobing of the core material. Because the task of the shell is
to protect the encapsulated substance, it should have excellent film-forming and barrier
properties against oxygen, water, pressure, heat, and/or light [44,45]. A single microcap-
sule may have a round or irregular shape, depending on the method of producing the
microcapsule, the type of active, and wall materials (Figure 2). The average size of the
microcapsules is 100–500 µm [46]. Therefore, this process can provide many benefits to
the use of EOs in food recipes, including protecting them from harsh conditions (light,
shear, oxygen, moisture, heat, and others), improving their solubility and bioavailability,
increasing their controlled release, and preventing their interaction with other food ingre-
dients. This also allows for the reduction of volatilization of volatile substances, slowing
mass transfer or modifying the physical properties of the core material. It reduces the
evaporative loss of liquids and the reactivity of the core material, and extends the duration
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of its activity [43]. Encapsulation facilitates application by transforming the liquid into a
solid phase, ensuring precise dosing, improving stability, and masking the encapsulated
substance’s taste and/or smell. In addition, microencapsulation of essential oils can be a
viable and effective approach to liquid food matrices with high water content by increasing
their dispersibility. Facilitating the distribution of EOs in food areas where microorganisms
thrive (water phase) and minimizing their particle diameter may also contribute to improv-
ing their antimicrobial properties. The smaller size of the molecules favors the migration
and attachment to the bacterial cell walls [18,47]. Commonly used microencapsulation
techniques are emulsification, spray-drying, coaxial electro-spray system, freeze-drying,
coacervation, in situ polymerization, extrusion, fluidized-bed-coating, and supercritical
fluid technology [42,44].
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6. Spray Drying—The Most Commonly Used Method for Encapsulation of Essential Oils

Microencapsulation by spray drying is the oldest (has been used since the 1930s) and
most common process used for microencapsulation in the food industry to preserve the
physicochemical properties of volatile compounds such as essential oils. This method is
most often used in the food industry due to its low production costs, large-scale production
in a continuous mode, variety of encapsulating matrices, and adequate retention and
stability of volatile compounds [22,42]. It consists of atomizing the emulsion in a drying
medium at a relatively high temperature, which allows for quick evaporation of water and
almost instantaneous encapsulation of the core material [42,44]. Microencapsulation with
the use of spray drying is characterized by high retention of volatile substances during
processing and their protection during storage. During this process, multinuclear capsules
are formed in which the essential oil is distributed both inside and on the surface of the
microcapsule, and thus volatile substances may be lost. This loss might occur during
the process at three stages: during atomization, after the drop formation on the surface
when a stable membrane has not been formed, and where the water inside the drop
exceeds the boiling point and bubbles formed within the drop burst, cracking the surface
and releasing volatiles [48]. Essential oils are substances highly sensitive to temperature.
Ambient temperature crucially influences EOs stability; because of this, EOs may be
degraded during this process. In general, chemical reactions are accelerated by increasing
temperature (according to the Arrhenius equation). On this basis, van’t Hoff’s law states
that a 10 ◦C increase in temperature approximately doubles the rate of chemical reactions.
The degradation of essential oils by heat is a chemical phenomenon and can occur by
various pathways, which can be broadly classified as oxidative degradation, cleavage of
the C-C bond, elimination, hydrolysis, and thermal rearrangement. Under the influence
of elevated temperature and due to their structural relationship within the same chemical
groups, components of essential oils can easily transform into each other mutually, which
may cause changes in their taste, smell, and antimicrobial activity [21,48,49]. For this reason,
it seems legitimate to look for alternative methods for the spray-drying of essential oils. To
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reduce the loss of essential oils and the undesirable chemical changes that may occur during
their spray drying, the use of complex coacervation seems to be an interesting alternative.

7. Simple and Complex Coacervation—What Is the Difference?

Coacervation is one of the oldest and most widely used encapsulation techniques. It is
a relatively simple method that can be compared to a modified emulsification technique.
Coacervation name comes from the Latin word acervus, which means aggregation, and the
prefix co indicates the fusion of colloid particles [43]. The mechanism of this process consists
of the separation of the hydrocolloid from the primary solution followed by agglomeration
into a separate, liquid phase which is called “coacervate”. The coacervates are called the
“continuous phase”, whereas the second phase is called the “equilibrium solution” [43,50].
The coacervation process can be divided into four stages: suspending the core material
particles in the liquid phase, production of a three-phase system, i.e., secretion of the
second liquid phase (coacervate), deposition of liquid polymer around the core, gelling,
and solidification of the microcapsule wall (Figure 3).
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(A), suspending the core material in the liquid phase (B), deposition of liquid polymer around the
core (C), gelling, and solidification of the microcapsule wall (D), own elaboration [43].

Coacervation has been classified into simple (SC) and complex coacervation (CC). Sim-
ple coacervation refers to the cases where only one polymer is involved and salted out by
the action of electrolytes (sodium sulfate) or desolvated by the addition of a water-miscible
nonsolvent (ethanol) or by increasing/decreasing the temperature [50,51]. Complex coacer-
vation is a phase separation process caused by the interaction of two or more oppositely
charged colloids (biopolymers), usually proteins and polysaccharides. The term complex
coacervation was first introduced by Bungenberg de Jong and Kruyt in the 1940s to distin-
guish it from simple single polymer coacervation [43]. In this technique, the liquid phase
separates from the polymer-rich (coacervate) phase.

The main driving force for complex coacervation is the reduction in free electro-
static energy of the reaction system resulting from the interaction between oppositely
charged ions [52]. This process is also influenced by parameters such as pH (coacervates
formation occurs over a narrow pH range below the isoelectric point), ionic strength,
protein-polysaccharide ratio, total biopolymer concentration, type of core material, and the
core:wall ratio [42,48,53,54]. The speed of agitation plays an important role in controlling the
size of the coacervates formed. In addition, the difference between the polymer loads must
be large enough to cause interaction, but not large enough to cause precipitation. Highly
charged molecules are reported to have an extended molecular conformation resulting in
unfavorable coacervation [52]. Microcapsules prepared in this way are insoluble in water
and heat-resistant but the main advantages of complex coacervation compared to other
microencapsulation methods are the overall higher encapsulation efficiency and the possi-
bility of using controlled release. The process results in a circular microcapsule in which
the core is surrounded by a wall material that protects the active compound [48,53,54].
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8. Wall Materials Used in Complex Coacervation
8.1. Gelatin and Arabic Gum—Standard in Complex Coacervation

The most common system used in complex coacervation is gelatin (G)–Arabic gum
(AG) [54–57] in Table 1. It is recommended due to its abundance, biocompatibility, and
biodegradability [36,38]. Two types of gelatin can be distinguished—A and B. Gelatin
A is formed by partial hydrolysis of collagen in an acidic environment, whereas gelatin
B is in an alkaline environment. The isoelectric point (pI) of gelatin A produced ranges
from pH 6–9, whereas gelatin B possesses a pI of 4.8–5 [58,59]. During the complex
coacervation, the electrostatic attraction between gelatin and the anionic polysaccharide
(i.e., Arabic gum) occurs at a pH below 9 for gelatin A and a pH below 5 for gelatin
B [59]. In the case of G and AG, the mechanism of complex coacervation can be explained
by the electrostatic attraction between the positive protein charges (NH3+) and negative
charges derived from AG (COO−) [59,60]. Gelatin and Arabic gum when exposed to
electrostatic interactions form a coacervate layer that hardens in the process of gelatin
cross-linking. In a chemically induced cross-linking process, the insoluble network is
formed by the reaction of the aldehyde residues of the cross-linking agent and the amino
groups of the protein. This newly formed network strengthens the wall of the capsule,
thus facilitating the drying process and increasing the storage stability of the capsules [38].
However, this process is chemically induced by formaldehyde, glutaraldehyde, glyoxal,
or epichlorohydrin, which are considered toxic to the human body, and are most often
used to cause this process. This is one of the major limitations of the production of
microcapsules for the food industry using the (G)–(AG) system [50,52,61]. This is not the
only drawback of this combination. Preparation of a gelatin solution generally requires
a relatively high temperature (50–60 ◦C) to completely dissolve the gelatin [52,56]. For
that reason, the quality of sensitive compounds such as essential oil could deteriorate at
this temperature. Another disadvantage of gelatin is its animal origin and, in the case of
beef gelatin, its possible association with bovine spongiform encephalopathy (“mad cow
disease”). Therefore, the most popular gelatin is that of porcine origin—not acceptable by a
certain group of consumers based on their religious and dietary preferences [52]. Moreover,
due to the increasing popularity of vegetarian and vegan diets, the current aim in the food
industry is to minimize the use of ingredients of animal origin.

Arabic gum, also known as gum acacia, is a complex anionic polysaccharide with
fractions of 90–99% arabinogalactan and 1% glycoprotein. This amazing composition gives
it effective surface properties. Furthermore, it has a molecular structure with a galactan
main chain carrying the highly branched galactose/arabinose side chains which contributes
to a much higher negative charge density in comparison to a linear polysaccharide of the
same composition. Moreover, Arabic gum has good cold solubility due to the presence of
residual charged groups and peptide fragments [43,62] It also has low solution viscosity
and the ability to form a protective film around emulsion droplets. All of this above makes
Arabic gum an effective emulsifier and good encapsulating agent [43,63].

As already mentioned, the combination of G and AG is the most commonly used com-
bination of wall materials in complex coacervation. After pioneering systematic studies of
the complex coacervation of gelatin and acacia in 1949, the first practical application of this
system was the microencapsulation of dyes [43,64]. Since then, a huge amount of work on
the microencapsulation of various active substances using the complex coacervation of this
pair of polymers as one of the leading applications of protein-polysaccharide coacervation
in encapsulation technology has been studied over the last few decades. Coacervation
between G and AG is induced with an aqueous solution of both polymers at pH 6–7 and a
temperature of 50–60 ◦C, above the gelatin gelling point. This system has already been used
to encapsulate various types of flavors and colorants [65], oils [50,54,66,67], food ingredi-
ents [56], and medicines [68]. It has also been used for the complex coacervation of essential
oils. A research team led by Lv et al. [62] confirmed that the pH of 4.80 and the mixing
ratio 1:1 between G and AG were suitable for the preparation of spherical nanoparticles
with trapped jasmine essential oil. Analysis of structural properties and volatile flavor
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compounds showed that such nanocapsules have good heat resistance capability against
humid heat (80 ◦C). The results suggested that the G-GA system may have potential use as a
delivery vehicle for functional ingredients food. The results of another study examining the
G-GA system [69,70] showed that the obtained coacervate microcapsules can be used for
the sustainable release of EOs during food storage and as promising organic preservatives
to inhibit foodborne pathogens.

8.2. Milk Proteins and Polysaccharides

Milk proteins (MP) have been extensively used in the food industry because of their
amphiphilic nature, which allows them to adsorb and spread around the oil/water matrix.
Those proteins are also popular as food additives for their nutritional, functional, and
active properties. Milk proteins can be divided into whey proteins (WPI) (alpha with
pI ranges from 4.3–4.7 and beta lactalbumin, pI = 5.2) and caseins, with pI ranges from
4.9–5.6 [59,71,72]. Many authors [71–74] have conducted complex coacervation with the
use of milk proteins and various types of polysaccharides. From the research carried out
so far, it is possible to conclude that increasing the concentration of MP and biopolymer
ratio leads to an increase in the pH at which the CC process occurs including. This, in turn,
leads to an increase in the average size of the microcapsules formed. This phenomenon
can be explained by the decreasing force of electrostatic repulsion between proteins and
polysaccharides [59]. The limitation in the use of milk proteins in the coacervation process is
the fact that during the preparation of emulsions (ultrasound, temperature, high pressure),
their partial denaturation and conformational changes may occur. This negatively affects
the process of coacervate formation. As already mentioned, the food industry is trying to
reduce the use of animal products. In addition, milk proteins are strong allergens [75].

Arabic gum is used as a polysaccharide for complex coacervation, along with milk
proteins, e.g., chitosan, carrageenan, or alginates, which are also often used.

Chitosan (CH) is a cationic polysaccharide produced by the deacetylation of chitin
in the hydrolysis of acetylamino groups in a highly alkaline environment and at elevated
temperatures. Its structure consists of D-glucosamine and N-acetyl-D-glucosamine, linked
by β (1→ 4) O-glycosidic bonds. Its low toxicity and allergenicity, as well as hydrophobicity,
biodegradability, tissue biocompatibility, and antimicrobial activity, allow it to be used
in edible film formulations or microencapsulation of bioactive compounds [76]. A study
conducted by Tavares et al. [76] aimed to encapsulate garlic aqueous extract by complex
coacervation between WPI and CH. FTIR analysis confirmed that garlic compounds were
intact and encapsulated. Scanning electron microscopy images showed all microparticles
with a spherical shape and no evidence of cracking or fissures on the surface. Therefore, it
can be concluded that the combination of WPI and CH is a good alternative for use as wall
systems to protect the bioactive compounds.

Carrageenan (CG) is the general name for a group of high molecular weight sulfated
anionic polysaccharides extracted from red seaweeds formed by alternate units of D-
galactose and 3, 6-anhydro-galactose (3, 6-AG) joined by α-1, 3, and β-1, 4-glycosidic
linkage [72,77]. There are three main types of carrageenan, called kappa (κ), iota (ι), and
lambda (λ). They are differentiated based on the number and position of sulfate groups on
the galactose/anhydrogalactose chain. κ-carrageenan contains one sulfate group, whereas ι
and λ have two and three per disaccharide repeating unit, respectively [72,78]. Since CG is
a sulfated polysaccharide, it has a negative net charge in a wide pH range, which allows
it to interact with positively charged compounds such as WPI under its isoelectric point
where the protein has a positive net charge [72]

Alginates are natural polysaccharides isolated from the cell walls of various species of
brown algae. They consist of linear chains (1–4)-connected b-D-mannuronic acid residues
and A-L-guluronic acid in various proportions [79]. Bastos et al. [80] conducted extensive
research on the microcapsule structure of black pepper essential oil (BPEO) obtained in the
process of complex coacervation between lactoferrin (LF) and sodium alginate (SA). The
authors indicate that the LF-SA system resulted in high encapsulation efficiency (>80%), and
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the essential oil components were retained. The main identified component of BPEO was
β-caryophyllene. After the encapsulation process, 97.5% of this compound was protected.
In addition, the researchers presented the results of studies obtained with the use of an
artificial gastrointestinal tract. The black pepper EO capsule demonstrated resistance under
oral and gastric conditions and release in the intestine, contributing to absorption in the
in vitro simulation.

An interesting study was also conducted by Rojas-Moreno et al. [81] to compare the
microencapsulation of orange essential oil by complex coacervation with whey protein iso-
late (WPI) and different polysaccharides: carboxymethylcellulose (CMC), SA, and CH. The
process was successfully performed with an encapsulation efficiency of 94% (WPI:CMC),
88% (WPI:SA), and 91% (WPI:CH). Another study conducted by Soliman et al. [82] showed
that EO microcapsules (thyme, cinnamon, cloves) made with calcium alginate can retain
30–50% of the antifungal activity of EO after a storage period of 8 days, whereas all of these
EOs have lost all their antifungal activity after two days of storage.

8.3. Plant Proteins and Polysaccharides

Due to the above-described trends among consumers and the limitations connected
with the use of gelatin and milk proteins for the process of complex coacervation, plant-
origin proteins were of growing interest. Another reason is they are environmentally
friendly, low cost, available, and have interesting functional properties [45]. Among
various plant proteins, soy protein (SP) is the most well-studied and most commonly
employed in the microencapsulation technique. This is because SP has functional properties
for encapsulation, such as emulsification, solubility, film-forming, and water binding
capacity, in addition to presenting high nutritional value (contains at least 90% protein;
it is thus virtually free from lipids and carbohydrates) [83]. Due to their amphipathic
nature (hydrophilic and hydrophobic), these proteins exhibit a good ability to diffuse
and/or adsorb, and stabilize the interface of, oil droplets during emulsification, thus
acting as effective emulsifiers to form and stabilize oil-in-water emulsions [84]. These
properties of SP make it widely used in the microencapsulation process. However, the
hydrophilicity/hydrophobicity balance of a protein’s surface is also thought to impact
protein solubility, and this is crucial for the process of comprehensive coacervation. Soy
protein is characterized by low solubility, but it can be increased by adding a polymer.
Complexation-enhanced protein solubility is well observed in the literature [43,48,50,73,85].
It has been identified that the biopolymer mixing ratio is the factor most responsible for the
solubility of proteins when they are in complexes. Significantly improved protein solubility
for mixtures of soy protein isolate and xanthan gum at mixing ratios of 1:1 to 1:4 was
observed [85]. Many research teams have confirmed that the use of soy protein together
with polymer results in good stability of the core material during storage [70,86] or high
process yield and the encapsulation efficiency [70,83].

Yuan et al. [70] conducted a study in which they proved that the use of soy protein
and chitosan as wall materials for the complex coacervation of algae oil is effective in
reducing its oxidation during storage. In similar studies [87] of the same SPI-CH system,
DSC thermograms revealed increased denaturation temperature of SPI from 78 to 85 ◦C
and elevated network thermal stability from about 38 to 43 ◦C.

However, proteins such as peas (PP), rice (RP), lentils (LP), or wheat (WP) are becoming
popular in recent years. They possess different molecular weights and isoelectric points
depending on the extraction method and plant source. As a result of using them instead of
those of animal origin, the coacervation process can take place at room temperature. Yellow
Pea (Pisum sativum L.) isolates are attractive for food and nutraceutical applications among
plant proteins. This is due to their health properties, and the fact that PP is not allergenic
and is gluten-free. In addition, PP is characterized by wide availability and low price [88].

The interactions between PP and different polysaccharides were applied (AG, tragacanth
gum—TCG, tara gum—TG) to the microencapsulation of α-tocopherol by spray drying of com-
plex coacervates. The effect of the protein/polysaccharide ratio was demonstrated—an increase
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in the proportion of polysaccharides increased the size of the particles in the suspension.
In the presence of proteolytic enzymes, the PP-TCG mixture retained a stronger gastro-
protective effect compared to the PP-AG matrices. The results of this study demonstrated
the ability of PP to bind to plant polysaccharides, especially gum tragacanth, to form an
interesting microencapsulation coating that is resistant to gastric digestion [89].

The influence of pH on the course of the complex coacervation process and the
wall:core ratio on the physicochemical properties of the produced microcapsules have al-
ready been investigated [90]. The results indicate that the pH of the coacervation formation
had a great influence on the microstructure of the coacervates. As a result, the technical
characteristics of microencapsulation such as powder yield (PY), encapsulation efficiency
(EE), and oil distribution in the microcapsules, as well as the oxidative stability of the
encapsulated oil, dictated different results. PP and sugar beet pectin (SBP) were used as
wall materials, and hemp seed oil (HSO) was the core material. Microcapsules spray dried
from PP-SBP coacervates at pH 3.5 showed lower EE than those at pH 2.5. However, holes
and/or partially broken particles were observed in the spray-dried microcapsules prepared
at pH 2.5 (SEM observation), which had the effect of deteriorating the protection against
oxidation of the encapsulated oil. Thus, the choice of the wall:core ratio and the pH of the
coacervation formation is extremely important and should be determined by taking into
account the balance between technical performance and the oxidative stability of the core
material [Tab. 1]. Further research into pea protein as wall material is advisable.

At present, there are no studies on the use of PP or any other plant protein for the
complex coacervation of essential oils. Nevertheless, it is known that they are able to form
microcapsules in the process of complex coacervation, increasing oxidative and thermal
stability of core substances. They can be successfully used for the controlled release of the
core material and as a delivery system for the active ingredient. Therefore, we believe that
complex coacervation using plant proteins has a bright future ahead of it.

8.4. Mucilage Instead of Commonly Used Polysaccharides

It is not only animal proteins that can be a starting point for the discussion. Addi-
tionally, Arabic gum, widely used in CC, which, despite its natural origin, has recently
been negatively perceived by consumers. This is because AG is assigned the symbol
E. The consumer approach has led scientists to try to replace Arabic gum with polysac-
charides derived from mucilage raw materials such as chia seeds (Salvia hispanica), cress
seeds (Cardamine), flax seeds (Linum usitatissimum), marshmallow (Althaea officinalis), aloe
vera, prickly pear (Opuntia ficus-indica), etc. [91–94]. The combination of gelatin and chia
mucilage results in a high encapsulation efficiency (>90%) of the essential oil [93].

Chia (Salvia hispanica L.) was eaten centuries ago as a staple food by the Mayas and
Aztecs of Central and North America. It fell into oblivion after the Spanish conquest
and is now experiencing its renaissance. It can be found in many different products,
mainly for breakfast-bread, rolls, muesli, yogurts, ready-to-eat porridge, or smoothies.
Chia seeds have a unique nutritional profile, hence the increase in popularity. Chia is an
excellent source ofω-3 andω-6 fatty acids, proteins with high biological value, antioxidants,
vitamins, and minerals. In addition, it has been reported that the consumption of seeds
is able to prevent inflammation and the occurrence of civilization diseases [95–98]. What
is most important, chia seeds are capable of absorbing large amounts of water through
swelling. Upon hydration, a hydrogel network is formed—soluble fiber, known as chia
seed mucilage (CM)—which is and can be used in emulsification and foaming processes.
Chia seed polysaccharides consist of, inter alia, D-xylose, D-glucose, β-d-xylopyranosyl
acid, α-d-glucopyranosyl, and 4-O-methyl-α-d-glucopyranosyluronic acid [96,99]. CM is a
promising material for the food industry because like popular vegan thickeners such as
alginate, polyvinyl alcohol, and carrageenan, CM is biodegradable and digestible [95,100].
Consumption of CM has a positive effect on health by facilitating the passage of the contents
in the intestines, thanks to which the peristalsis is improved. Additionally, CM has prebiotic
properties [100,101].
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Features such as appearance, color, flavor, texture, taste, aftertaste, and overall accept-
ability of orange juice with the addition of microencapsulated linseed oil with chia mucilage
as a wall material were tested [102]. The results of the research showed that the enrichment
of orange juice with nanoparticles did not affect the sensorics. Chia mucilage microcapsules
have proved to be a good material for concealing the taste and smell of the encapsulated
core substances. Similar studies were carried out for pomegranate juice that was fortified
with microencapsulated fish oil. A complex coacervation between gelatin and acacia was
used for microencapsulation. The study showed a significant decrease in the acceptability
of oil-enriched juice compared to pure juice [66,102] The results of this study also showed
that the nanocapsulation of linseed oil with chia mucilage as structuring material protected
the linseed oil from oxidation. When it comes to in vitro digestion, good bioaccessibility to
linseed oil has been observed, suggesting that the nanoencapsulation gave the oil digestive
stability and thus the potential for use in food [102].

A similar study was conducted with microencapsulated chia seed oil (CSO) [103]. The
study compared oil release from emulsions, simple coacervates of chia protein (CSP) or chia
gum (CSG), and complex coacervates between CSP-CSG. Complex coacervate shell provided
higher resistance to the release and subsequent digestion of CSO compared to that by CPI
only or CSG-only matrices, indicating that protein-polysaccharide complex coacervates can
preferably be used as shell materials for delivering sensitive food ingredients to the intestinal
digestion stage with minimal damage in the harsh gastric environment. Such a combination
could also be successful with essential oils. However, there are no studies available at
the moment. Hernandez Nava et al. [93] conducted a study showing that the complex
coacervation between gelatin and chia mucilage resulted in high encapsulation efficiency
(>90%). Further research into the use of chia mucilage as a wall material for encapsulating
essential oils is advisable.

Table 1. Encapsulation efficiency depends on the wall materials used, and its own elaboration.

Wall Material
Wall

Material
Ratio

Core
Material—Essential

Oil

Wall:Core
Ratio pH Method of Emulsification Encapsulation

Efficiency [%] Reference

Gelatin Arabic gum 1:1 Citronella 2:1 4.5 Magnetic stirrer + cross-linking 94–42 [101]

Gelatin Arabic gum 1:1 Geraniol 2:1
4.2 Cross-linking + high-speed

homogenization
71–77 [57]

4.45 87–91

Gelatin High methyl
pectin 3:1 Peppermint 1:2 4.23 Magnetic stirrer + cross-linking 75–82 [61]

Whey
protein
isolate

Arabic gum

1:1

Ginger 1:3 3.66 High-speed homogenization +
ultrasonication

5

[104]

2:1 30
3:1 43
4:1 38
5:1 30
6:1 28

7:1 25

Pea
protein
isolate

Arabic gum

2:1

No core material

2.5

No treatment

88

[76]

3.0 95

3.5 99

4.0 91

4.5 90

5:1

2.5 70

3.0 90

3.5 92

4.0 98

4.5 92

10:1

2.5 78

3.0 88

3.5 94

4.0 98

4.5 92
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Table 1. Cont.

Wall Material
Wall

Material
Ratio

Core
Material—Essential

Oil

Wall:Core
Ratio pH Method of Emulsification Encapsulation

Efficiency [%] Reference

Gelatin Chia mucilage 1:2 Oregano 1:1 3.6 Ultrasonication 91–79 [93]

Whey
protein
isolate

Quince
mucilage 7:3 No core material 4.0 Magnetic stirrer 80–67 [74]

9. Complex Coacervation of Essential Oils

The process of microencapsulating essential oils by complex coacervation occurs
in stages. The first one is hydration and preparation of wall materials solution. The
essential oils and an emulsifier (e.g., Tween 20, 60, 80) are then added to these solutions,
and the emulsification process is carried out. This step is essential because the quality
of the emulsion and the interaction between its droplets directly affect the stability of
the microcapsules produced later. The final step is curing by spray drying or freeze-
drying [59,93].

Microencapsulation of essential oils using complex coacervation allows for their
controlled release. It is the process of delivering EO delayed after administration or incor-
poration into the food matrix for an extended period [59,105]. This process is influenced
by environmental conditions (type of food matrix), type of EO, the composition of micro-
capsules (proteins, polysaccharides), and microcapsule architecture. Essential oils can be
released from their microcapsules through a variety of mechanisms (Figure 4). The swelling
mechanism involves increasing the pore size as the matrix swells, which promotes the re-
lease of the encapsulated Eos. The mechanism of erosion is the dissolution of the outer part
of the support (surface erosion) or all of the support (bulk erosion), often due to enzymatic
or chemical hydrolysis. The mechanism of fragmentation is the rupture or breakage of the
support matrix, which often occurs due to mechanical forces. The resulting increase in
surface area and shorter diffusion paths mean that the bioactive agents are released from the
fragments faster than the original carrier. The diffusion mechanism involves the diffusion
of the bioactive component through the carrier matrix into the surrounding environment.
EO microcapsules should be designed to be used in a specific product because food is
exposed to a variable temperature, ionic strength, pH and mechanical conditions and
stress during processing and storage [76,104,106,107]. The preparation of microcapsules of
essential oils produced by complex coacervation can be an effective method to preserve
their physicochemical properties. At the same time, it can contribute to increasing the
applicability of essential oils in food as natural additives with a preservative effect and
increasing the nutritional value of the final product. EO microcapsules can be an effective
way to reduce the use of synthetic food additives while enabling the creation of interesting
products placed in the functional food segment.
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10. Conclusions and Future Perspectives

The food industry is trying to move away from the use of artificial additives and
preservatives in food. Currently, substances of plant origin, including essential oils, are
gaining more and more popularity. Despite the strongly documented pro-health and
antimicrobial properties, the use of essential oils on a larger scale is currently not possible
due to their very strong taste and aroma, which negatively affects the acceptability of the
products in which they are found. In addition, they are characterized by high instability
(sensitivity to light, oxygen, and temperature) and a hydrophobic nature, which prevents
their solubility in the water phase of food where microorganisms develop. Therefore,
scientists are looking for solutions that will preserve their properties during storage and at
the same time mask their strong taste and smell and reduce their hydrophobicity.

All these limitations may be solved by microencapsulating EOs using complex coacer-
vation. It is an alternative method to the most commonly used spray drying. It allows not
only to eliminate the elevated temperature during the encapsulation process, but also to bet-
ter enclose the core material and its protection from the external environment. Additionally,
the fact that microcapsules of essential oils obtained through complex coacervation would
constitute a kind of nutraceutical deserves attention. The use of non-allergenic proteins of
plant origin (peas, rice) and polysaccharides from chia seeds with properties improving
intestinal motility would significantly increase the nutritional value and health-promoting
effect of the product to which microcapsules prepared in this way would be added.



Molecules 2022, 27, 5142 14 of 18

Future research should focus on the possibility of producing microcapsules of essential
oils as described. There is also no information on the in situ use of essential oils as
antimicrobial agents.

Author Contributions: A.N. invented and prepared a manuscript, made figures and tables. M.K.
critically reviewed and revised the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
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