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1. Introduction

Texture is a key quality attribute used in the fresh and pro-
cessed food industry to assess product quality and acceptability.
Among the texture characteristics, hardness (firmness) is one of
the most important parameters of fruit and vegetables, which is of-
ten used to determine the freshness of food (Konopacka and Plo-
charski, 2004). Crispness is the key trait of cellular, brittle and
crunchy food (Taniwaki and Kohyama, 2012). Given gelled prod-
ucts such as muscle food, springiness, cohesiveness, adhesiveness
and gumminess are significant properties for the texture evalua-
tion (Akwetey and Knipe, 2012; Stejskal et al., 2011). Textural qual-
ity attributes of food may be evaluated by descriptive sensory or
instrumental analyses. The combination of time and high cost
associated with sensory perception has motivated the develop-
ment and widespread use of empirical mechanical tests which cor-
relate with sensory perceptions of food texture (Costa et al., 2011;
Kim et al., 2012; Wang et al., 2007). Over the years, a wide range of
instrumental tests have been used in both research and industry to
assess food texture, and a great deal of effort has been expended in
improving the instruments and measurement techniques for
meaningful estimation of textural properties (Oraguzie et al.,
2009; Zdunek et al., 2010a, b). Different texture measurement
methods may give different results, some expressed as single val-
ues such as fruit firmness measured by hand held penetrometer
(Ioannides et al., 2007), while others provide more in depth infor-
mation on the history of deformation, such as time-series data on
texture measurement (Derington et al., 2011; Taniwaki et al.,
2010). These developments have enabled researchers to further
analyze food texture data to provide better understanding of the
mechanisms of texture and relevance to sensory perception.

The objective of this article is to provide a review of recent
developments in texture analysis and modeling of fresh and pro-
cessed foods, including approaches to texture profile analysis of
instrumental measurements. Various texture indices employed in
food analysis and models to predict texture changes during food
handling and processing are also discussed.
2. Texture profile analysis

Texture profiles are curves which monitor and record the spa-
tial or temporal characteristic events of samples during food tex-
ture measurements. Analysis of the profiles of mechanical and
acoustic measurements is an important aspect of food texture re-
search. Texture profile analysis (TPA) sets up a ‘bridge’ from objec-
tive measurement to subjective sensation and makes food texture
characteristics more predictable.

The history of food texture measurement and texture profile
analysis (TPA) dates back to the late 19th and early 20th centuries
when the analysis was based primarily on simple sensory evalua-
tions to detect and eliminate defects (Bourne, 1982). It was during
the past 60 years which coincided with boom in food processing
that texture measurement and analyses emerged as a subject of re-
search and learning in tertiary education, particularly in food sci-
ence and technology (Szczesniak, 2002). Given its fundamental
importance on food science, several authors have discussed the
meaning and historical context of TPA (Bourne 1982, 1978; Brandt
et al., 1963). The his seminal textbook on food texture and viscosity
Bourne (1982) chronicled the early history of texture measurement
and analysis and credited Dr. Alina S. Szczesniak for pioneering our
current understanding of the multidimensional nature of texture
and its importance to the consumer and for developing the princi-
ples of texture profile analysis for both instrumental and sensory
methods. Bourne (1982) provides an excellent detailed description
of the principle of the TPA, with illustrations of the compression
required for TPA test, typical TPA curves generated with specific
instruments and a generalized texture profile analysis curve ob-
tained from Instron Universal Testing Machine. With respect to
food products, these reviews agree that texture profiling involves
compressing the product at least twice and quantifying the
mechanical parameters from the recorded force–deformation
curves (Szczesniak, 2002) as illustrated in Fig. 2. In this section of
the review, we discuss the applications of TPA to the two main of
types of tests (mechanical and acoustic) used to measure food
texture.

2.1. Profile analysis of mechanical measurements

Mechanical measurements of food texture can be categorized as
destructive and non-destructive methods. For example, destructive
group includes three-point bending test, single-edge notched bend
(SENB) test, puncture and penetration tests and cutting ‘‘tooth
method’’ which used an incisor blade (Jiang et al., 2008). This group
of methods may link with the micro-structural and molecular
mechanisms and imitate the mastication process, but they are
destructive and there are no clear relationships with mouth feel.
The methods of quasi-static force–deformation (Ruiz-Altisent
et al., 2010), impact response (Herrero-Langreo et al., 2012; Moli-
na-Delgado et al., 2009; Ragni et al., 2010), ‘‘finger’’ compression
(Jiang et al., 2008), and bioyield detection (Lu and Tipper, 2009;
Mendoza et al., 2012) are named as non-destructive measurement
as usually no visible damage is found and possible to be applied on
line. However, the main disadvantages of mechanical non-destruc-
tive methods are that they are still destructive in micro-scale and
the information obtained from experiments is not comprehensive.

In both of destructive and non-destructive measurements, force
is the key parameter. Therefore, typical texture profiles are force
versus time/distance (displacement)/deformation (Chaunier et al.,
2007; Farris et al., 2008; Greve et al., 2010; Ragni et al., 2010; Sasi-
kala et al., 2011). De Roeck et al. (2010) compressed carrot cylinder
to 70% of its original thickness to obtain the maximum force as the
hardness; Sila et al. (2006) described hardness as compression
force at 30% strain. In a penetration test, the steep initial slope
was treated as the character of stiffness (Nguyen et al., 2010).
Takahashi et al. (2009) measured texture properties of cookies
and raw radish by puncture test, which showed many peaks and
formed a zigzag pattern in the force–strain curves indicating the
crispy characteristic. Varela et al. (2008a) compared the texture
properties of roasted and raw almonds, which indicated that
roasted almond was clearly brittle and crisp with significantly low-
er first force breakdown (force at first peak) and lower deformation
at the point. The probe tensile separation method has been applied
for quantitative characterization of the stickiness of fluid foods.
During the tensile separation test, the probe is slowly brought
downwards to squeeze the fluid sample till the final pre-set gap
between the two plates is reached and subsequently pulled back
at a set speed (Fig. 1). The force needed for separation is recorded.
The maximum tensile force and the work till the maximum force
were found to be useful parameters for stickiness prediction (Chen
et al., 2008). Tsukakoshi et al. (2007) studied the force–deforma-
tion curves recorded by two different testing machines and the re-
sults showed that the number of changes in the curves depended
on the testing machine. Thus, it is difficult to compare the results
by using different instruments.

Warner–Bratzler shear force (WBSF) test is a useful technique
that has been used since the 1930s as standard mechanical mea-
surement to estimate the toughness (or tenderness) of raw and
cooked meat (Girard et al., 2012; Lorenzen et al., 2010) such as
pork (Cai et al., 2011), beef (Destefanis et al., 2008) and rabbit meat
(Combes et al., 2004). The profile shows either force exerted over
time or force exerted versus the distance that the blade has



Fig. 1. High speed camera images of honey stretched (arrow pointing north) during a tensile test. The time interval between each image was around 40 ms, and the extension
of the honey in y-axis was (a) 0.1 mm, (b) 0.9 mm, and (c) 1.7 mm (modified from Chen et al., 2008).

Fig. 2. Texture analysis using Szczesniak mastication profile. Hardness = H, Adhe-
siveness = A3, Cohesiveness = A2/A1, Brittleness = B, Cohesion Strength = C,
Indentation = T1, Elastic Quality = T2/T1, Masticability = H � A2/A1 � T2/T1, Gum-
miness = H � A2/A1 (modified from Kealy, 2006).

Fig. 3. Examples of the force–displacement curve and acoustic events. The dashed
circle indicates an acoustic event cluster (Taniwaki and Kohyama, 2012).
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travelled (Girard et al., 2012). Usually, the most considered param-
eter of the curve is the maximum shear force.

TPA test is based on the imitation of mastication or chewing
process with a double compression cycle. The typical profile of
TPA test (Fig. 2) can assess a wide range of fresh and processed
food texture properties, such as hardness (the maximum force re-
quired to compress the sample, H), springiness (the ability of sam-
ple to recover its original form after the deforming force is
removed), cohesiveness (extent to which the sample could be de-
formed prior to rupture, A2/A1), adhesiveness (the total negative
area between the first and the second peak, A3), gumminess (the
force needed to disintegrate a semisolid sample to a steady state
of swallowing, hardness � cohesiveness), and chewiness (the work
needed to chew a solid sample to a steady state of swallowing,
springiness � gumminess) (de Huidobro et al., 2005; Guiné and
Barrocab, 2012; Jaworska and Bernas, 2010; Kealy, 2006; Martinez
et al. 2004; Wu et al., 2006). The test parameters can be calculated
from the compression force versus time (or distance) curves usu-
ally using software such as the ‘Texture Exponent Lite’ developed
and supplied by manufacturer (Farahnaky et al., 2012). The TPA
method has been successfully used for texture assessment in dif-
ferent foods such as fresh-cut pineapple (Montero-Calderon
et al., 2008), date flesh (Rahman and Al-Farsi, 2005), mushroom
(Jaworska and Bernas, 2010), root vegetable (Farahnaky et al.,
2012), biscuit dough (Sudha et al., 2007), cheese (Ayyash et al.,
2011), abalone (Briones-Labarca et al., 2012), meat emulsions
(Yilmaz et al., 2012), and sausages (Herrero et al., 2007). Further-
more, researchers have compared TPA with WBSF test in meat tex-
ture analysis. For example, hardness (or tenderness) was better
predicted by TPA than by WBSF, while springiness was only pre-
dicted by WBSF (Caine et al., 2003; de Huidobro et al., 2005).

2.2. Profile analysis of acoustic measurement

Typical characteristic for many hard, crispy and crunchy solid
food products is their brittle fracture behavior, mostly accompa-
nied by a sharp sound (acoustic emission or vibration) which is
closely related to their texture attributes (Luyten et al., 2004;
Maruyama et al., 2008; Taniwaki et al., 2006; van Vliet and
Primo-Martin, 2011). Therefore, researchers have combined
mechanical tests, such as compression, penetration and three-
point bending test with acoustic measurement (Marzec et al.,
2010; Saeleaw and Schleining, 2011a,b; Varela et al., 2009).

There are several profiles often used in acoustic measurement
such as sound pressure/acoustic emission (also referred to as
acoustic module or acoustic pressure level) versus time/strain/dis-
placement/distance (Arimi et al., 2010a; Castro-Prada et al., 2009;
Costa et al., 2011, 2012; Salvador et al., 2009; Saeleaw et al., 2012).
The important acoustic parameters are the number and magnitude
of sound events (Sanz et al., 2007). Varela et al. (2009) described
that the number of sound peaks was the best parameter to discrim-
inate texture differences of samples. Usually, mechanical and
acoustic profiles are presented in the same figure (e.g. Fig. 3),
which could give a clear comparison between them and may help
to analyze texture properties. Fig. 3 represents a force–displace-
ment curve and acoustic events when a potato chip sample was
bent for a few millimeters before a major fracture. The analysis
range was set between the initial point and major fracture point.
The study revealed that most of the force drops accompanied
acoustic event (Taniwaki and Kohyama, 2012). By studying bis-
cuits, Arimi et al. (2010b) found that the number of force and
sound peaks, spatial ruptures, sound curve length and area under
the sound curve correlated well (R2 > 0.77) with sensory crispiness
data. Zdunek et al. (2010a) also proved that there was a significant
correlation of acoustic emission counts with sensory crispness,
crunchiness, hardness, juiciness, mealiness and overall apple
texture.
2.3. Advantages and limitations of texture profile analysis

The main advantage of texture profile analysis is that the profile
records the process phenomena during the mechanical texture



Fig. 4. Schematic of firmness evaluation method by impact test (modified from
Shmulevich et al., 2003). Pmax is the peak amplitude of the impulse response (V).

Fig. 5. Schematic of firmness evaluation method by acoustic test (modified from
Shmulevich et al., 2003). The f1 and f2 of sensor-1 are the first and second natural
frequency of the tested fruit, which are shown as an example.

Fig. 6. (a) A schematic of the texture measurement device. A probe was inserted
into a fruit sample, and the vibrations produced during penetration were sensed by
a piezoelectric sensor. (b) A typical texture signal of a sample (Taniwaki et al.,
2009a).
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measurement, which may compare quantitively with the ‘feel’ of
human mouth, fingers or ear. However, different equipment and
the experimental conditions are just like different people and their
eating habits. If there are no strict standards to be complied with, it
is hard to compare the results from different researches.

3. Texture indices

3.1. Firmness index

Firmness is an important texture attribute of foods, especially
the fresh foods, and has been a criterion for sorting fruit and veg-
etables for many years (Wang et al., 2006). In engineering termi-
nology, firmness may be interpreted in terms of the modulus of
elasticity (E), shear modulus or maximum penetration force
(Cherng and Ouyang, 2003; Ragni et al., 2010). Usually firmness
is measured by non-destructive methods, such as acoustic, vibra-
tion, micro-deformation, impact, and absorption of light (typically
short-wave length near-infrared) (Subedi and Walsh, 2009). It is
obvious that each of the quality indices is based on one specific
measurement method.The most frequently used empirical impact
parameters for firmness evaluation, namely firmness indices, are
C01 and C02 (Shmulevich et al., 2003):

C 01 ¼
Pmax

t

� �
ð1Þ
C02 ¼
Pmax

t2

� �
ð2Þ

where Pmax is the peak amplitude of the impulse response (V) and t,
an impact characteristic time (ms) (Fig. 4), such as tp, time to peak
amplitude, tc, pulse duration, or tm, width of the impact at half of the
peak amplitude. According to the indices, García-Ramos et al.
(2003) created an on-line ejection system and fruit was sent to its
corresponding outlet. Although C1 and C2 sometimes have good cor-
relation with other firmness test results, sometimes they have not,
due to their high sensitivities to the variations in fruit form, location
and impact angle (Shmulevich et al., 2003).

In acoustical methods (Fig. 5), the most likely used firmness
indices, C1 and C2, are defined as follows:

C1 ¼ f 2
1 m2=3q1=3 ð3Þ

C2 ¼ f 2
2 m2=3q1=3 ð4Þ

where f is the first or second natural frequency of the tested fruit, m
is its mass (kg), and q is density (kg/m3), however q is often deleted
in a simplified formula (Cherng and Ouyang, 2003; Molina-Delgado
et al., 2009; Mendoza et al., 2012; Shmulevich et al., 2003; Taniwaki
et al., 2009a, b; Wang et al., 2006). Nevertheless, the limitations of
these methods are to evaluate the firmness index of non-spherical
fruit, such as avocado or mango. Cherng and Ouyang (2003) created
a new firmness index C3, which is proportional to elasticity, formu-
lated by relating to mass, density and natural frequencies:

C3 ¼ ðf1f 2
2 Þ

2=3
m2=3q1=3 ð5Þ

This new index extended the firmness estimation for fruits or
vegetables from a spherical to a prolate ellipsoidal shape. At the
same time, based on C3, another firmness index C4, which is espe-
cially for cases from spherical to oblate ellipsoidal shape, could be
defined as:



Fig. 7. Texture indices of six cabbage cultivars (SK-1, T520, M-3, Kinkei-201, Fuyu-
kuguri and Fuyu-nobori) calculated by Eq. (9) (modified from Taniwaki and Sakurai,
2008). The bars indicate standard error (n = 24 for SK-1 and Kinkei-201; n = 36 for
other cultivars).
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C4 ¼ ðf2f 2
1 Þ

2=3
m2=3q1=3 ð6Þ

A more general firmness expression was formulated by combin-
ing C3 and C4 giving:

C ¼ ððminðf1; f2Þðmaxðf1; f2ÞÞ2Þ
2=3

m2=3q1=3 ð7Þ

Eq. (7) is suitable for both prolate and oblate cases and practi-
cally useful. In addition, since Poisson’s ratio for many fruits is
greater than 0.3, the applicable geometry range of ellipsoidal sam-
ples for the new firmness index is at least between axis ratio of 0.4
and 2.0 (Cherng et al., 2005).

3.2. Texture index

Based on the characteristics of food mastication process, Saku-
rai et al. (2005a) and Taniwaki et al. (2006) designed a testing de-
vice for food texture measurement which inserts a probe into a
food sample and detects the vibration caused by the sample’s frac-
ture (Fig. 6). Meanwhile, they created a texture index (TI1) that va-
lue was determined according to the ‘‘amplitude density’’ of the
obtained signals (Taniwaki et al., 2006, 2009a):

TI1 ¼
P
jVij
t

ð8Þ

where |Vi| is the absolute amplitude of each data point in volts and t
is the data length in seconds. The texture index reflects the level of
sound generated per second when a sample is masticated. The rip-
ening of persimmon cultivars was evaluated successfully by this TI
(Taniwaki et al., 2009a). Still in the same research group and with
the similar device, a new TI, ‘‘energy density’’ (Fig. 7), was intro-
duced, which was determined by the integration of squared ampli-
tudes of texture signals multiplied by a factor of a frequency band.
This TI enabled evaluation of acoustical signals in the high-fre-
quency region (>1000 Hz). It is more sensitive than the previously
used index (‘‘amplitude density’’). The new TI is calculated using
the following expression (Taniwaki and Sakurai, 2008):

TI2 ¼ ðfl � fuÞ �
1
n

Xn

i¼1

V2
i ð9Þ

where TI2 is the texture index, fl represents the lowest and fu the
highest limit of each frequency band determined by the half-octave
multi-filter, Vi (V) is the amplitude of the texture signal, and n is the
number of data points. Using this kind of equipment and the new TI
values, researchers evaluated the crispness, crunchiness or firmness
of several foods, such as cabbage cultivars and their leaves, pears,
potato chips and grape flesh (Iwatani et al., 2011; Taniwaki et al.,
2009b,c, 2010).

3.3. Crunchiness index

Crunchiness index (CI) created by Nguyen et al. (2010) and
relating product puncture force and stiffness, was able to charac-
terize the severity of the process treatments on various products
tested. The CI was presented as:

CI ¼ Ftreatment

Fctrl
þ Grad%treatment

Grad%ctrl
ð10Þ

where Grad% represents the slope of the force–deformation curve of
the processed sample at different percentages (10–70%) of maxi-
mum puncture force. This value represents the sample stiffness. F
is the maximum puncture force (N) of the processed samples and
represents the sample hardness. The subscripts ‘treatment’ and ‘ctrl’
refer to process treatment and control sample values, respectively.
Results reported by Nguyen et al. (2010) showed that instrumental
CI results were in agreement with the sensory data of carrot, red
radish and jicama, and the authors concluded that CI can be used
as an effective tool for comparing the instrumental textural quality
of samples subjected to various process treatments.

Another texture index, ‘‘Sharpness index’’, which is based on the
acoustic vibration of the probe when the probe is inserted into the
tissue, was reported by Sakurai et al. (2005b) and successfully ap-
plied in texture analysis of persimmon fruit.

3.4. Advantages and limitations of texture indices

The texture indices, namely firmness index, texture index,
crunchiness index and sharpness index, are based on either
mechanical or a combination of mechanical and acoustic methods
(Table 1). Among these indices, the firmness index was investi-
gated relatively more than others by different researchers. The
testing methods of firmness are simple and non-destructive, which
may be applied to on-line quality evaluation. However, since the
mechanical measurement approaches usually are device-depen-
dent, the texture indices obtained from different equipments are
difficult to compare. Additionally, the evaluated food products by
these indices discussed above are mainly fresh or processed fruit
and vegetables. No studies on gelled products have been reported
yet. The firmness index based on low-mass impact method may be
adopted to classify muscled food, but this method would not be as
comprehensive as TPA and WBSF tests.

4. Texture modeling

Modeling is an efficient approach to predict the texture of foods.
Empirical, semi-empirical and statistical models have induced a
tremendous impetus on food texture research. With rapid and
ongoing progress in modeling techniques, computational simula-
tion modeling approaches such as finite element method (FEM)
provide more opportunities to achieve further understanding of
food texture.

4.1. First order reaction/kinetic model

Due to its mathematical simplicity and utility, the first order
reaction/kinetic model is a widely employed empirical model to
predict food texture, especially for studying textural changes of
thermally processed foods (Sila et al., 2004). A general reaction rate



Table 1
Texture indices of fresh and processed food.

Index Based testing method Food sample References

Firmness index Low-mass impact, non-destructive
Acoustical
response, non-destructive

Fruit and vegetables Cherng et al. (2005), García-Ramos et al. (2003),
Molina-Delgado et al. (2009), Mendoza et al. (2012),
and Shmulevich et al. (2003)

Texture index Fracture vibration, destructive Cabbage leaves, pears, potato chips,
grape flesh

Iwatani et al. (2011), Taniwaki et al. (2006), (2009a,b,c),
and 2010)

Crunchiness index Puncture method, destructive Carrot, red radish, jicama Nguyen et al. (2010)
Sharpness index Acoustic vibration of probe penetration,

destructive
Persimmon fruit Sakurai et al. (2005b)
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expression for the degradation kinetics can be written as follows
(Nisha et al., 2006):

� d½TR�
dt
¼ k½TR�y ð11Þ

where ‘TR’ is the quantitative value of the texture of the product un-
der consideration, ‘k’ is the rate constant for texture development,
‘y’ is the order of the reaction, and ‘t’ is the time (s). On integration
of Eq. (11) with respect to time for the first order reaction (y = 1)
gives (Nisha et al., 2006; Yu et al., 2011):

ln
TR
TR0

� �
¼ �kt ð12Þ

where ‘TR0’ is the texture reading at time 0, and ‘TR’ is the texture
reading after time ‘t’. An exponential type of degradation function
of time is often discussed (Liu and Scanlon, 2007; Nisha et al.,
2006). Usually, the first order model is written as below:

TR ¼ TRx þ ðTR0 � TRxÞe�kt ð13Þ

where ‘TRx’ can be ‘TR1’ (the ‘TR’ after a long time) (Le-Bail et al.,
2009), and also can be ‘TRfix’ (the invariable part of ‘TR’) (Lana
et al., 2005), that depends on how you define the equation. By
means of this model, some mechanical property changes of foods
during processing were predicted including shear modulus, Young’s
modulus, firmness, hardness and maximum indentation force
(Table 2).

Based on the traditional first order model, some other useful
empirical models have been used, such as Arrhenius equation com-
bined with fractional conversion factor, to predict the changing
kinetics of texture in slices and strips of food products (Troncoso
and Pedreschi, 2007; Yu et al., 2011). The Arrhenius equation is
one of the most well-known equations in the chemical field and
is widely used to describe the temperature dependence of kinetic
constants, such as k (Schwaab and Pinto, 2007):

k ¼ k0 exp �W
RT

� �
ð14-1Þ

where k is the rate constant (or the specific reaction rate), T is the
absolute temperature (K), R is the ideal gas constant, k0 is the fre-
quency (or pre-exponential) factor and W is the activation energy
(J). Both k0 and W are the parameters of the Arrhenius equation,
usually estimated from experimental data. In order to minimize
the high correlation between the estimates of two parameters, k0

and W, another type of Arrhenius equation is adopted (Sila et al.,
2004; Schwaab and Pinto 2007):

k ¼ kref exp
W
R

1
Tref
� 1

T

� �� �
ð14-2Þ

where kref is the reference reaction rate constant at the reference
reaction temperature Tref, while k is the reaction rate constant at
temperature T.

The fraction conversion is defined as the fraction of reactant
that has been converted to yield a product at a given time. The
formula is ðFM0 � FMtÞ=ðFM0 � FM1Þ;where FM0 is the initial
firmness at time zero, FMt is the firmness at a given time, t, and
FM1 is the nonzero equilibrium firmness at infinite time. The
first-order reaction in terms of the fraction conversion can be sim-
plified as (Corzo et al., 2006):

ln 1� FM0 � FMt

FM0 � FM1

� �
¼ ln

FMt � FM1

FM0 � FM1

� �
¼ �kt ð15Þ

Using the first order kinetic model modified by fractional con-
version technique (factor) and combined with Arrhenius equation
for the kinetic constant, the changes of food texture properties dur-
ing processing were investigated, for example, Young’s modulus of
potato strips during deep frying (Thussu and Datta, 2012), hard-
ness of carrots during thermal processing (Sila et al., 2004), firm-
ness of sardine sheets during vacuum pulse osmotic dehydration
(Corzo et al., 2006), etc.

4.2. Gibson–Ashby equation

Gibson–Ashby equation, a macroscopic model, is one of the
useful semi-empirical models used in food texture analysis. The
equation is written as

E�

E
¼ q�

q

� �2

ð16Þ

where E� represents the Young’s modulus of the cellular solid, E rep-
resents the Young’s modulus of the same solid material without
cells, q� and q represent the density of the cellular solid and of
the same solid material without cells, respectively. This model de-
scribes the relationship between the mechanical properties and
the porous structure of materials, such as bread crumb (Le-Bail
et al., 2009; Zghal et al., 2002).

4.3. Generalized Maxwell model

The generalized Maxwell model with a discrete number of ele-
ments is another popular semi-empirical mechanical model for
quantification of relaxation behavior of foods and a variety of
polymeric materials (Andrés et al., 2008). In the linear viscoelastic
range (low deformation), the behavior of foods can be simulated
by employing mechanical models consisting of springs and dash-
pots, which is the mechanism of general Maxwell model (Bhat-
tacharya, 2010; Del Nobile et al., 2007). Originally, it is given by
the following expression (Del Nobile et al., 2007):

EðtÞ ¼ rðtÞ
e0
¼
Z 1

0
EðkÞ � expð� t

k
Þ � dk ð17Þ

where E(t) (MPa) is the relaxation elastic modulus at time t (s), r(t)
(MPa) is the stress at time t (s), e0 is the imposed strain, E(k) (MPa)
is the continuous distribution function of relaxation times, k (s) is
the relaxation time. During the stress-relaxation test, the viscoelas-
tic behavior of sample material is revealed in a finite, discrete set of



Table 2
Approaches adopted by researchers for modeling texture of fresh and processed foods.

Modeling
approach

Modeling principle Texture/rheological property Produce References

First order
reaction
kinetics
(including
modified
types)

Based on chemical reaction
kinetics. The development
of texture is directly
proportional to the texture
property.

Shear modulus; firmness; texture
development rate; maximum
indentation force; Young’s
modulus; hardness; Stress
relaxation behavior (large
deformation)

Rennet casein gelation; fresh cut
tomatoes; truss tomatoes; melon;
potato cubes, green gram whole, red
gram splits; tomatoes; potato strips;
potato slices; bread crumb; carrot;
root vegetables; litchi; sardine
sheets; Moth bean flour (raw and
roasted) doughs

Bhattacharya (2010), Corzo et al.
(2006), De Roeck et al. (2010),
Farahnaky et al. (2012), Lana et al.
(2005), Liu and Scanlon (2007), Le-
Bail et al. (2009), Nisha et al. (2006),
Sila et al. (2004),Schouten et al.
(2007), Schouten et al. (2010),
Troncoso and Pedreschi (2007),
Tijskens et al. (2009), Thussu and
Datta (2012), Van Dijk et al. (2006a,
b), Yu et al. (2011), and Zhong and
Daubert (2004)

Second-order
kinetic
equation

The rate of change of
texture property follows a
second order reaction
kinetics.

Maximum stress and Young’s
modulus

Chestnuts Moreira et al. (2008)

Generalized
Maxwell
model
(including
modified
type) with 2,
3, 4, 7-
element

Mechanical models
consisting of springs and
dashpots.

Stress relaxation behavior (low
deformation), fish skin hardness

Solid-like foods; moth bean flour
(raw and roasted) doughs; low-fat
chicken sausage, Cape hake, Rohu fish

Andrés et al. (2008), Bhattacharya
(2010), Del Nobile et al. (2007),
Herrero and Careche (2005), and Jain
et al. (2007)

Finite element
method
(FEM)

Based on fundamental
mechanics in
microstructure.

Mechanical properties Single tomato cell; cereal solid foods;
two food materials; bread crumb

Dintwa et al. (2011), Guessasma et al.
(2011), Kanit et al. (2006), and Liu
and Scanlon (2003a,b)

Statistical model Relationship between
texture property and other
variables associated with
the experimental design.

Firmness, crispiness, crunchiness Tomatoes, tomato pericarp, mango,
banana, peach, cassava crackers,
crisps, snack

Pinheiro and Almeida (2008), Rojo
and Vincent (2009), Subedi and
Walsh (2009), Saeleaw and Schleining
(2011a), Saeleaw et al. (2012), and
Van Dijk et al. (2006a)

Gibson-Ashby
model

Relationship between the
mechanical properties and
the porous structure of
materials. Semi-empirical
model in macro-scale.

Young’s modulus; compression
modulus

Bread crumb; brittle foams Agbisit et al. (2007), and Zghal et al.
(2002)

Michaelis–
Menton type
decay
function

One of the simplest and
best-known models of
enzyme kinetics

Firmness Apples Harker et al. (2006)

Logistic equation
(including
Boltzman
function

Based on the highly
simplified autocatalytic
mechanism

Firmness; softening Nectarine, Kiwifruits Rizzolo et al. (2009), Tijskens et al.
(2007), and White et al. (2005)

Fig. 8. The generalized Maxwell model with one residual spring element in series
(modified from Bhattacharya, 2010). g1, g2, g3, . . ., gn are the viscosities of the first,
second, third . . . and nth dashpot elements, respectively (Pa s). E1, E2, E3, . . ., and En

are the modulus of elasticity for the springs in the first, second, third . . . and nth
Maxwell body, respectively (Pa).
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response times associated spectral strengths. The generalized
Maxwell model consisted of several Maxwell elements in parallel
with an independent spring is usually presented as Eq. (18) (Andrés
et al., 2008; Bhattacharya, 2010):
EðtÞ ¼ Ee þ
Xn

i

Eiexpð� t
ki
Þ ð18Þ

where Ei and ki are the elastic modulus and the relaxation time of
the ith Maxwell element, respectively, and Ee represents the modu-
lus of the lone spring (Fig. 8). Literature evidence (Table 2) have
shown that the viscoelastic behavior of foods such as low-fat chick-
en sausage (Andrés et al., 2008) can be described by a generalized
Maxwell model; however, the challenge is to determine the number
of Maxwell elements to be used in parallel with an independent
spring. A modified version of Maxwell model was applied success-
fully to predict the texture of food products such as fish (Herrero
and Careche, 2005; Jain et al., 2007). However, if food exhibits
non-linear viscoelastic behavior when subjected to a large deforma-
tion, the generalized Maxwell model does not apply (Bhattacharya,
2010).
4.4. Finite element method (FEM)

FEM modeling based on explicit meshing of the material micro-
structures has proved to be a useful tool for studying the complex
mechanical behavior of foods. Several simplified fundamental
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mechanical models are introduced in this method. It may be
roughly summarized by four stages. The first one is to define the
geometry and the meshing; the second stage is to include the
material properties; the third stage is to determine the stress dis-
tribution within the solution domain; the fourth stage is to submit
the solution domain to a virtual standard mechanical test (Guess-
asma et al., 2011). Finally, the FEM results have to be examined by
experiments. FEM based on three-dimensional confocal images
were performed on two kinds of food materials and the compari-
son between simulations with different boundary conditions and
experiments were carried out by Kanit et al. (2006). For the bread
crumb excised from optimal and overproved loaves, the FEM tech-
nique gave excellent agreement with the experimental compres-
sion stress–strain curves; excellent agreement was also found
between the experimental elastic modulus and critical stress (Liu
and Scanlon, 2003a,b). Guessasma et al. (2011) reviewed the latest
applications of mechanical modeling by FEM to the field of cereal
foods, outlined their actual limits and prospected for texture pre-
diction. Furthermore, thanks to the image recording of geometry
changes of microstructures, Dintwa et al. (2011) simulated the
compression process of single tomato cell by FEM. However, as
other modeling methods, FEM also has its own challenges, such
as how to choose or decide the material properties and reasonable
constants, and how to properly generate meshes on irregular food
shapes.

4.5. Statistical modeling approaches

Statistical models are another important group of modeling ap-
proaches which are mainly based on mathematics. These ap-
proaches are likely to be adopted when the fundamental
mechanism of the process or the correlation of parameters is un-
clear. They are often applied to study the relationship between
non-mechanical measuring data and food texture properties. Pin-
heiro and Almeida (2008) employed the simple linear regression
model to analyze the relationships between tomato pericarp firm-
ness and pH and calcium. Partial Least Square Regression model
was adopted to correlate the data on firmness of tomato, banana,
mango, peach and kiwifruit to the near infrared spectral data (Sub-
edi and Walsh, 2009; Van Dijk et al., 2006a, b) and waveguide spec-
tral data (Ragni et al., 2012). Response surface methodology was
applied to analyze the effects of independent variables on the re-
sponse parameter of snack by matching the response studied with
the code factors (Saeleaw et al., 2012). Weibull model was em-
ployed to statistically analyze the crispness of crisps by Rojo and
Vincent (2009). At the same time, some other statistical methods
of data analysis, such as one/two/three-way analysis of variance
(ANOVA) and principle component analysis (PCA), are also fairly
often used in sensory evaluation and instrumental measurement
(Alvarez et al., 2011; Ares et al., 2012; Benedini et al., 2012; Çakır
et al., 2012; Varela et al., 2008a, b; Wang et al., 2007; Zdunek et al.,
2010b). Furthermore, artificial neural network, a non-linear statis-
tical data modeling tool, was used to correlate the values of fluid
mechanical stresses during swallowing to the sensorial texture
perception (Rauh et al., 2012).

4.6. Other modeling approaches

Except for the popular modeling approaches described above,
there are still some other useful models available: White et al.
(2005) used Boltzman function to predict Kiwifruits softening pro-
cess; Harker et al. (2006) applied Michaelis–Menton type decay
function to predict apple firmness during cold storage; using
Young’s modulus as a measure for texture, Thussu and Datta
(2011) built a framework, combining multiphase porous-media
based process-model and experimental determined data, for
predicting the effective modulus of a solid food material, which
had been developed and extended to four moisture removal pro-
cesses–frying, drying, microwave heating and baking.

In addition, several research groups have offered nice contribu-
tions to food texture modeling during the latest twenty years. Be-
sides melon and nectarine (Rizzolo et al., 2009; Tijskens et al.,
2007, 2009), tomato is the most important fruit they studied. From
truss tomatoes to single tomato suspension cells, they discussed
the firmness and the predicting models included first order chem-
ical kinetics (some based on multitude of firmness origins, such as
enzyme and pH values) (Lana et al., 2005; Schouten et al., 2007,
2010; Van Dijk et al., 2006a, b), statistical models (such as partial
least squares regression relating the data on firmness to the near
infrared spectral data) (Van Dijk et al., 2006a, b), and FEM for sim-
ulating the force–deformation behavior of tomato cells (Dintwa
et al., 2011).

It is paramount to choose or create suitable models for predict-
ing texture properties. Zdunek et al. (2011) used three modeling
approaches, the simple linear, multiple linear and the principal
component regression (PCR), to investigating the correlation of ap-
ple sensory texture to the contact acoustic emission data. PCR
models showed the best results among the three models in this
study. Troncoso and Pedreschi (2007) compared four models, two
irreversible serial chemical reaction, one irreversible chemical
reaction, modified first order kinetics (combined with Arrhenius
equation and fractional conversion technique) and traditional first
order kinetics, in maximum puncture force of potato slices during
drying. The comparison revealed that the simplest traditional first
order kinetics was not as good as the other three models. Yu et al.
(2011) compared modified first order kinetics with Weibull model
in the thermal degradation process of litchi firmness. The results
indicated Weibull model had better performance than the modi-
fied first order equation. Similar foods with different modeling
methods were also studied by researchers. For example, Young’s
modulus and failure stress of bread crumb were successfully fitted
(0.55 6 R2

6 0.94) to the relative density power law model pro-
posed by Gibson and Ashby (Zghal et al., 2002), and with the axi-
symmetric FEM model, the load–displacement curves of bread
crumb generated from cylindrical indentation were well predicted
(Liu and Scanlon, 2003b).

Although modeling researches have been carried on for dec-
ades, the varieties of foods seem huge. Even the most familiar
foods, for instance, an entire dairy process and the final mechanical
properties of the end-product, such as firmness, are still poorly
modeled (Foucquier et al., 2012). Thus, more efforts should be
made in this field.
5. Conclusions

The approaches to analysis of spatial/temporal texture data re-
corded during experiments are widely employed in research and
food industry due to their practicability. However, since food tex-
ture is too complicated to be described by only one physical prop-
erty, more profiles may need to be analyzed together for food
texture determination. For example, TPA test combined with
acoustic component could be a useful approach to evaluating the
texture characteristics. The use of food texture indices is still quite
limited, which seems bounded by the definitions of indices them-
selves because most of them are based on specific measurement
methods and corresponding instruments. With computer assis-
tance, modeling is becoming a powerful approach to food texture
analysis. The data of both sensory perception and instrumental
measurement may be analyzed, while the challenge is the lack of
fundamental models for the vast variety of foods. Therefore, multi-
disciplinary collaboration among food engineers, material
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researchers, consumer scientists and other professionals is neces-
sary for the texture analysis of food products.
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