See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311716447

Application of Edible Coatings on Fruits and Vegetables

Article in "Imperial Journal of Interdisciplinary Research (IJIR) · December 2016

CITATIONS 24	5	READS 19,391	
3 autho	rs:		
0	J. Kabir Bidhan Chandra Krishi Viswavidyalaya 32 PUBLICATIONS 206 CITATIONS SEE PROFILE	8	Vijaykumar T. Kore Krishi Vigyan Kendra 14 PUBLICATIONS 76 CITATIONS SEE PROFILE
	Sima S. Tawade SSSM College of Agricultire, pimpalkhuta 3 PUBLICATIONS 26 CITATIONS SEE PROFILE		

Some of the authors of this publication are also working on these related projects:

Project

PhD thesis View project

RKVY, Govt. Of India View project

Application of Edible Coatings on Fruits and Vegetables

Vijaykumar T. Kore¹*, Sima S. Tawade² and J. Kabir³ ¹ICAR- Central Citrus Research Institute, Nagpur- 440033 ²Department of Animal Husbandry and Dairy Science, College of Agriculture, Nagpur- 400001 ³Department of Post Harvest Technology of Horticultural Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia (West Bengal) – 741 252, India

Abstract: Many techniques have been studied in order to extend the shelf life of fresh produce (fruits and vegetables), for example, low temperature and high relative humidity, controlled and modified atmosphere packaging/storage, etc. however, each advantages and disadvantages. has The maintenance of the quality of fresh produce is still a major challenge for the food industry. Research on edible coatings and films has been intense in recent years. Edible coatings have many advantages over other techniques, but only when the coated produces are stored at proper temperatures, which depends on the commodity. They can act as moisture and gas barriers, control microbial growth, preserve the colour, texture and moisture of the product and can effectively extend the shelf life of the product. All fruits and vegetables have a natural waxy coating on their surface, which conserves water. Wiping of fruits or abrasions by wrapping paper is sufficient to impair the protective action of waxy layer and increases the rate of respiration of fruits. The most common ingredients of coating are described and diverse coating material used in fruits and vegetables is discussed in this review.

Keywords: Edible coatings, Fruits, Vegetables,

1. Introduction

All fruits and vegetables have a natural waxy coating on their surface, which conserves water. Wiping of fruits or abrasions by wrapping paper is sufficient to impair the protective action of waxy layer and increases the rate of respiration of fruits. Hence, a protective coat on fruits and vegetables is given by application of extra continuous or discontinuous film on them.

The idea of using edible coatings has also been obtained from skin of fruits and vegetables (Goldstein et al., 1992). These are thin layer of edible materials which restrict loss of water, oxygen and other soluble material of food (Bourtoom, 2008).

The coating is an integral part of the food which can be eaten as a part of the whole food product (McHugh and Krochta, 1994). Edible coatings can offer the following advantages to the fresh fruits and vegetables industry: a) improved retention of colour, acids, sugar and flavour components; b) maintenance of quality during shipping and storage; c) reduction of storage disorders; and d) improved consumer appeal (Nisperos-Carriedo et al., 1991). Edible coatings have also a high potential to carry active ingredients such as antibrowning agents, colorants, flavours, nutrients, spices and antimicrobial compounds that can extend product shelf life and reduce the risk of pathogen growth on food surfaces (Vargas et al., 2008; Ricardo et al., 2012). During the last few decades a range of formulations of edible coating have been developed which are widely used in fruits and vegetable industries.

In this review article the properties of main coating ingredients and use of diverse coating materials in fruits and vegetables to increase shelf life has been discussed.

2. Materials Used for Edible Coating

Generally, coatings can be divided into proteins, lipids and carbohydrates, alone or in combination (Zaritzky, 2011). They act as barriers to moisture and oxygen during handling and storage and do not solely retard food deterioration but also enhance its safety due to their natural biocide activity or the incorporation of antimicrobial compounds (Cha and Chinnan, 2004). Different types of coating material are discussed here under.

2.1. Lipid Based Coatings

Lipids include a group of hydrophobic compounds, which are neutral esters of glycerol and fatty acids. They also include "waxes", which are esters of long-chain monohydric alcohols and fatty acids (Hernandez, 1994). Lipid coatings are good barriers to moisture loss. In addition to preventing water loss, lipid coatings have been used to reduce respiration, thereby extending shelf life, and to improve appearance by generating a shiny product in fruits and vegetables. Coatings that include lipid solids up to 75% can be used to improve coating performance without diminishing moisture-barrier properties (Martin-Polo et al., 1992). The effect of lipid based edible coatings used on fruits and vegetables is summarized in Table-1. Different lipid coating materials are discussed below.

2.1.1. Oils. Sources of edible oils are paraffin oil, mineral oil, castor oil, acetylated monoglycerides, and vegetable oils, (peanut, corn, and soy) have been used alone or in combination with other ingredients to coat food products (Hernandez, 1994).

2.1.2. Waxes. Wax coatings are naturally found on fruit and vegetable surfaces, where they help prevent moisture loss, especially in the dry humid season (Tharanathan, 2003). Preservation of fresh and dry fruits and nuts by was coatings have been practiced since time immemorial. Paraffin, carnauba, beeswax and candelilla wax (an oily exudate of the candelilla plant grown in USA/Mexico) have been used to coat food products, alone or in combination with other ingredients. Paraffin wax is a distillate of crude petroleum (Bennett, 1975) and is used for coating raw fruits and vegetables.

Several attempts had been made to develop edible wax from bio-based materials culminating in products like semperfresh and jonfresh (Yang et al., 2010), kafirin from sorghum (Gao et al., 2005), and bemul-wax from cassava starch (Afolabi and Oloywde, 2012). The bio-wax (bemul-wax), developed from liquefied cassava starch and bees wax was reported to be comparable to the Indian's commercial wax "waxol" for shelf-life extension of mandarin oranges (Afolabi et al., 2003). Its ability to preserve both the nutritional and sensory qualities of four months low temperature stored sweet oranges has also been reported (Afolabi, 2009). Bemul-wax and its coated products may be considered safe for consumption from elemental point of view. It may also be a good source of health beneficial minerals (Afolabi and Oloywde, 2012). Afolabi and Oloyede, (2011) reported the effect of the bemul-wax on some spoilage and defence-related enzymes in ambient temperature stored sweet potato. Carnauba wax is the exudates of Brazilian palm tree leaves (*Copernica ceirifera*) has a very high melting point and is used as an additive to other waxes to increase toughness and luster (Hernandez, 1991). Beeswax or "white wax" is secreted by honeybees, and candelilla wax is exudates of the candelilla plant (*Euphorbia antisphilitica*).

2.1.3. Fatty Acids and Monoglycerides. Fatty acids and monoglycerides are used in coatings mainly as emulsifiers and dispersing agents. Fatty acids are generally extracted from vegetable oils, while monoglycerides are prepared by transesterification of glycerol and triglycerol (Hernandez, 1994).

Resins. Resins are a group of acidic 2.1.4. substances that are produced and secreted as a wound response by specialized plant cells of tree and shrubs. Synthetic resins are petroleum based products (Hernandez, 1994). Shellac resins are secreted by the insect Laccifer lacca found in India. Shellac is composed of aleuritic and shellac acids (Griffin, 1979), is compatible with waxes, and gives coated product a high gloss appearance. Shellac and other resins have relatively low permeable to gases and moderate permeability to water vapour (Hagenmaier and Shaw, 1992). Application of shellac- based waxes reduces internal O2 levels, and increases internal CO2 (Petracek et al., 1998) and ethanol levels (Hagenmaier and Baker, 1994).

Table 1. Applications of lipid based coatings on fresh fruits and v	vegetables.
---	-------------

Produce	Coatings Types	Effect on Produce	References
Guava	Palm oil	Resisted the leaching effects	Suhaila- Mohammed et al., 1992
	Semperfresh	Less decay	Combrink et al., 1990
	Waxol	Best fruit quality, better the organoleptic properties, increased shelf life, highest acidity and TSS under the treatment with 6 to 9 %	Jagadeesh and Rokhade, 1998
	Carnauba wax	It delayed ripening and reduced the water loss and decay incidence. Little effect on TSS, total titratable acidity, and ascorbic acid	Jacomino et al., 2003; Kore and Kabir, 2011
Citrus	Beeswax and Larding (coated fruit with fat)	Retard water loss, prevent desiccation	Labuza & Contrereas- Medellin, 1981
Mango	Carnauba Wax	Effective in retarding fruit ripening, retaining fruit firmness, and improving fruit quality attributes including levels of fatty acids and aroma volatiles	Dang, 2008
	Carnauba Wax	Reduced weight loss, and shrivel; increase shelf	Oosthuyse, 1997

Imperial Journal of Interdisciplinary Research (IJIR) Vol-3, Issue-1, 2017 ISSN: 2454-1362, http://www.onlinejournal.in

		life; increase ground skin colouration	
	Semperfresh and A. vera gel (1:1 or 100%)	Slightly delayed fruit ripening but reduced fruit aroma volatile development	Dang, 2008
Apple	Wax, oil	Increased the shelf life.	Sabir et al., 2004
	Paraffin wax + beeswax + soybean oil + CMC	Decreased soluble solids, titratable acidity and ascorbic acid loss; increase storage life up to 34 days.	Torgul and Arslan, 2005
	Candelilla Wax	Prolongs and improves the shelf life, excellent antifungal barrier inhibiting the growth of natural phytophatogenic fungal strains and slow weight loss	Ochoa et al., 2011
Peach	Wax	Reduced the rate of physico-chemical changes; retained the best quality	Chaynika et al., 2005
Passion fruit	Carnauba wax	Lower the fresh matter loss percentage and higher the relative water retention; peel percentage decreased and pulp and pulp/peel percentages increased	Mota et al., 2006
Banana	Semperfresh	Extended the green life, delayed ripening	Chukwu et al., 1995
Pomegranate	Oil + starch	Reduced softening of arils, weight loss and % of browning index, loss of vitamin C, loss of anthocyanin and delayed microbial decay	Oz and Ulukanli, 2012
Walnuts and Pine nuts	Whey protein isolate + Pea starch (PS) + Carnauba wax	Prevent oxidative and hydrolytic rancidity, improved their smoothness and taste and improved sensory characteristics	Mehyar et al., 2012
Huanghua pears	shellac	Retaining texture (especially for brittleness); also maintained higher POD activity and lower activities of cell wall hydrolases such as PE, PG, and cellulase	Zhou et al., 2011
Tomato	Semperfresh	Delayed ripening, retained higher TSS: acid ratio in storage	Kabir et al., 1994
	Stayfresh	Delayed ripening, loss of firmness and reduced PLW	Shashikala et al., 2002
	Mineral oil wax	Preserving the quality and extending the shelf life, reduced the weight and firmness losses	Dávila-Aviña et al., 2011
Green pepper	Semperfresh	Retaining higher contents of Vit. 'C' and total 'chlorophyll'	Ozden and Bayindirli, 2002
	Mineral oil	Reduced moisture loss, maintaining fruit firmness and fruit freshness	Lerdthanangkul and Krochta, 1996
Pointed gourd	Semperfresh	Reduced physiological loss in weight and shrinkage	Chakraborty et al., 2002

2.2. Protein Based Coatings

Sources of proteins used in edible coatings of plant derived include corn zein, wheat gluten, soy protein, milk proteins and animal derived proteins like collagen, keratin and gelatin (Zhang and Mittal, 2010). Most protein films are hydrophobic and, therefore, do not present good barriers to moisture. However, dry protein films such as zein, wheat gluten, and soy present relatively low permeability's to O₂ (Gennadios et al., 1993) Protein-based films have impressive gas barrier and mechanical properties compared with those from lipids and polysaccharides (Ou et al., 2004). The effect of different protein based edible coating on fruits and vegetables are presented in tabular form (Table 2). The different types of proteins that are used as coatings are discussed:

2.2.1. Milk Protein

Milk protein products include casein (80% of total milk protein) and whey (20% of total milk protein), and combination of both (Maynes and Krochta, 1994).

2.2.1.1. Casein. Milk proteins and especially sodium caseinate (NaCas) are effective as edible coatings since they provide a high nutritional added value, good taste, show excellent functional properties and are filmogenic (Fuchs et al., 2008). Sodium caseinate is a mixture of casein monomers and small aggregates formed after removing the colloidal calcium phosphate from casein micelles, and can form films from aqueous solutions due to its random coil structure and its ability to form weak intermolecular interactions. Sodium caseinate has been extensively investigated because of its emulsifying properties (Lorenzen, 2007). Furthermore, the mechanical and water barrier properties of sodium caseinate films might be considerably improved at the casein isoelectric point, by calcium cross linking (Avena-Bustillos and Krochta, 1993), or by the addition of lipophilic molecules (Fabra et al., 2008). However, sodium caseinate has not been studied as a film matrix to carry and deliver active or bioactive molecules.

2.2.1.2. Whey protein. Whey is a byproduct of cheese manufacturing that contains approximately 7% dry matter. In general the dry matter includes 13% proteins, 75% lactose, 8% minerals, about 3% organic acids, and less than 1% fat. In general these whey proteins are used as additives in the agrofood industry, such as the athletic drinks (Onwulata, 2008). Viable edible films and coatings have been successfully produced from whey proteins; their ability to serve other functions, viz. carrier of antimicrobials, antioxidants, or other nutraceuticals, without significantly compromising the desirable primary barrier and mechanical properties as packaging films, will add value for eventual commercial applications (Jooyandeh, 2011; Ramos et al., 2012). Whey protein coating helped to improve the shelf life of, for example, peanuts, by retarding the lipid oxidation causing rancidity (Khwaldia et al., 2004). In addition, those edible films were reported not to modify the sensory attributes of the coated good or its aspect, while providing some health benefits for the consumer (Onwulata and Peter, 2008). The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH) barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR) of <2 [cm3(STP)/(m2d bar)] when normalized to a thickness of 100 µm (Schmid et al., 2012).

2.2.2. Collagen and Gelatin. Collagen is the major component of skin, tendon, and connective tissues and it is the most prevalent and widely distributed fibrous protein in the animals (Tharanathan, 2003). This material is partially digested with acid or enzymes to produce edible collagen casings.

Gelatin is formed from the partial hydrosis of collagen (Jongjareonrak et al., 2006) and has gained more attention as edible films for its abundance and biodegradability. Gelatin structure obtained from mammalian sources (Saxena et al., 2005), and more recently from fish skins (Yang and Wang, 2009). The most abundant sources of gelatin are pig skin (46%), bovine hide (29.4%) and pork and cattle bones (23.1%) (Gómez-Guillén et al., 2011).

2.2.2.1. Wheat Gluten. The gluten complex is a combination of gliadin and glutenin polypeptiodes with some lipid and carbohydrate components (Gennadios et al., 1994). It is soluble in aqueous alcohol, but alkaline or acidic conditions are required for the formation of homogeneous filmforming solutions (Gennadios et al., 1993a). These films have high water permeability but are good barriers to O_2 and CO_2 (Gontard et al., 1993).

2.2.2.2. Corn Zein. Zein is prolamine derived from corn gluten and is soluble in alcohol. It has been used as a substitute for shellac because of its high gloss appearance, faster drying rate, and increased stability during storage (Gennadios and Weller, 1990). Corn-zein and sucrose fatty acid ester coatings have been applied successfully on fresh fruits and vegetables, such as apples, bananas and tomatoes, as oxygen and water vapor barriers for extending their shelf lives (Park et al., 1994a).

2.2.2.3. Soy Protein. Soy protein is available as concentrate (70% protein) or isolates (90% protein). Film formation is enhanced by heating. which partially denatures the protein, allowing formation of disulfide bonds. This was shown to lower water vapour permeability. In Asia, films are formed from heated soy milk and are used for wrapping food products (Gennadios et al., 1994). The properties of soy protein films may be improved by blending with starch, sodium alginate, whey protein isolation, etc. (Tang et al., 2003). Soya Protein Isolate (SPI) is abundant, inexpensive, biodegradable, and nutritional raw material. It is a mixture of proteins with different molecular properties. Among them, the 7 and 11 S fractions that make up about 37% and 31% of the total extractable protein have the capability of polymerization (Cao et al., 2007).

2.2.3. Surimi. Surimi obtained from the stabilized myofibrillar fish proteins, has been reported to exhibit the film-forming ability (Paschoalick et al., 2003; Shiku et al., 2003). However, the film properties were governed by many factors including pH, plasticizers, etc. Recently, the transparent and flexible edible/biodegradable films were made from frozen threadfin bream surimi (Prodpran and Benjakul, 2005). The properties of films from surimi produced from tropical fish were affected by the pH used to solubilize the proteins, which directly influenced the proteolysis of muscle proteins (Prodpran and Benjakul, 2005).

Produce	Coatings Types	Effect on Produce	References
Cherry	Gelatine film	Lowest moisture loss	Lim et al., 2011
	Zein	Accelerated ripening and fungal deterioration	Carvalho-Filho et al., 2006
	Soy protein isolate (SPI)	Decrease the acidity	Lim et al., 2011
Kiwifruit	Whey protein concentrate and rice Bran oil	Preserved the color, firmness, taste, and the overall acceptability of the fruits, slow down the increase of acidity and weight loss	Hassani et al., 2012
Apple	Calcium caseinate and whey protein	Delayed browning	Tien et al., 2001
	Carrageenan + whey protein Concentrate	Maintained the original colour during storage without changes in sensory properties.	Lee et al., 2003
	Whey protein concentrate + beeswax	Reduced surface browning	Perez-Gago et al., 2006
	Galactomannans and collagen blends	Lower the CO2 production and the O2 consumption by approximately 50%	Lima et al., 2010
Mango	Galactomannans + collagen	Effective in less O ₂ consumption and CO ₂ production	Lima et al., 2010
Tomato	Corn-Zein	Delayed colour changes and ripening; reduced firmness loss and weight loss; extended the shelf life; inhibited ethanol production	Park et al., 1994
Zucchini	Casein proteins	Reduced water loss	Avena-Bustillos et al., 1994
Eggplant	Soy protein + beeswax	Prevent softening of the tissues and reducing browning of the tissue,	Ghidelli et al., 2010
Potato	Calcium caseinate and whey protein	Delayed browning	Tien et al., 2001
Bell peppers	Calcium caseinate and whey protein	Effective gas barriers to internal carbon dioxide and oxygen, inhibited color changes and reduced decay	Lerdthanangkul and Krochta, 1996
Carrots	Sodium caseinate and stearic acid	lower whitish index and could help moisturize the carrot surface	Avena-Bustillos et al., 1994

Table 2. Applications of protein based coatings on fresh fruits and vegetables.

2.3. Carbohydrate Based Coatings

Carbohydrates are used in food systems as thickeners, stabilizers, gelling agents, and emulsifiers (Ganz, 1977). Polysaccharide films have relatively low permeability to gases, but little resistance to water vapour transfer. Such coatings have been used to retard moisture loss of some foods during short term storage. Carbohydrate films can be effective in shining of surfaces and separating of product in packaging (Debeaufort et al., 1998). The role of carbohydrate based coating on fruits and vegetables is summarized in Table 3. Different types of carbohydrate based coatings are discussed below.

2.3.1. Cellulose. Cellulose derivatives are polysaccharides composed of linear chains of β (1–4) glucosidic units with methyl, hydroxypropyl or carboxyl substituents (Dhanapal et al., 2012). Only four cellulose derivative forms are used for edible coatings or films: Hydroxypropyl cellulose (E463; HPC), hydroxypropyl methylcellulose (E466; CMC) or Methyl cellulose (E461; MC). However, cellulose derivative films are poor water vapour barriers

because of the inherent hydrophilic nature of polysaccharides and they possess poor mechanical properties (Gennadios et al., 1997).

Pectin. Pectin is complex group of plant-2.3.2. derived polysaccharides found in middle lamella of plant cells (Nisperos-Carriedo, 1994). It is composed of D-galacturonic acid polymers with varying degree of methyl esterification. Coatings made with pectin materials generally have high water vapour transmission rates (Schultz et al., 1949) due to their hydrophilic nature. Pectin could provide a soft and shiny coat. It restricted the loss of nutrients and volatile materials during storage and transport. In addition, contamination of product by microorganisms could be controlled by pectin film. Separating of product in its package is the most important characteristics of this film (Salvatori et al., 1998).

2.3.3. Sucrose ester. Most formulations of sucrose ester have been based on one or more esters, a carrier, sodium carboxymethyl cellulose, or an antifoamant preparation of mono and diglycerides of fatty acids (Curtis, 1988). Sucrose polyester (SPE) coating delayed ripening in banana

(Banks, 1983), pears (Chen, 1986) and apple (Chu, 1985).

Semperfresh is an important formulation of earlier SPE products, which is use in USA, UK and in some other European countries for delaying ripening of fruits and vegetables (Drake et al., 1987).

2.3.4. Chitin/Chitosan. The application of edible coatings based on chitosan or caseinates is interesting because of its high nutritional quality, excellent sensory properties, and adequate protection of food products from their environment (Pereda et al., 2010; Mendes de Souza et al., 2010).

Chitosan is a modified, natural nontoxic biopolymer derived by deacetylation of chitin β -(1 \rightarrow 4)-N-acetyl-D-glucose-amine), (polyа major component of the shells of crustacean such as crab, shrimp, and crawfish (Maghsoudlou et al., 2012; Sitanggang et al., 2012). Recently chitosan has attracted notable interest due to its biological activities, including antimicrobial (Tsai et al., (Tokoro 2004). antitumor et al.. 1988). antioxidative (López-Caballero et al., 2005), and hypocholesterolemic functions (Sugano et al., 1992) and it has bacteriostatic and bactericidal properties. For this reason, chitosan is a highly recommended polymer for the production of edible film coatings (Chien et al., 2007). Methylation of the polymer resulted in a twofold resistance to CO_2 (Baldwin, 1994). Chitosan, a high molecular weight cationic polysaccharide, has been shown to be fungicidal against several fungi (Kendra et al., 1989) and also shown antibacterial properties (Moller et al., 2004).

Incorporation of green tea extract (GTE) into chitosan films improved mechanical and water vapor barrier properties and enhanced polyphenolic content and antioxidant activity of the films (Siripatrawan and Harte, 2010).

Starch. Starch, composed of amylose and 2.3.5. amylopectin, is primarily derived from cereal grains like corn (maize), with the largest source of starch (Dhanapal et al., 2012). Different sources of starch e.g. corn, potato, cassava and cereals etc. can be used (Dhanapal et al., 2012). Generally the varieties which contain high amylase starches can be utilized for edible film formation. Starch is the major carbohydrate reserve in plant tubers and seed endosperm where it is found as granules, each typically containing several million amylopectin molecules accompanied by a much larger number of smaller amylose molecules (Walstra, 2003). Amylose is responsible for the film forming capacity of starch (Romero-Bastida et al., 2005). High amylose starch films have been made that are flexible, oxygen impermeable, oil resistant, heatsealable, and water soluble.

Aloe vera. Aloe vera is a tropical and 2.3.6. subtropical plant that has been used for centuries for its medicinal and therapeutic properties (Eshun and He, 2004). Aloe vera contains malic acidacetylated carbohydrates (including β-1. 4 glucomannans) that demonstrated antiinflammatory activity (Esua and Rauwald, 2006). Recently, there has been increasing interest for the use of A. Vera gel as an edible coating material for fruits and vegetables driven by its antifungal activity (Rodriguez de Jasso et al., 2005). Valverde et al. (2005) reported that this edible coating was able to reduce the initial microbial counts for both mesophillic aerobic and yeast and molds in cv. Crimson Seedless table grapes.

In general, the positive effect of this edible coatings is based on their hygroscopic properties, which enables formation of O_2 and CO_2 and creating modified atmosphere (MA) and acting as moisture barrier between the fruit and the environment, and thus reduced weight loss, browning, softening, and growth of yeast and molds (Morillon et al., 2002).

Alginate. Alginate is a polysaccharide 2.3.7. isolated from marine brown algae (Phaeophyceae) is finding increasing use in the food industry as texturizing and gelling agents (Mancini and McHugh, 2000; Yang and Paulson, 2000). Alginate is a salt of alginic acid, a polymer of D-mannuronic acid and L-guluronic acid. Alginate has unique colloidal properties and can form strong gels or insoluble polymers through crossed linking with Ca²⁺ by post-treatment of CaCl₂ solution. Such biopolymer-based films can keep good quality and prolong shelf life of foods by increasing water barrier, preventing microbe contamination, maintaining the flavour and texture of the fresh-cut fruits. Such coatings increase moisture, and reduce perception of warmed over flavour induced by lipid oxidation (Rhim, 2004).

2.3.8. Carrageenan. Carrageenans are watersoluble polymers with a linear chain of partially sulphated galactans, which present high potentiality as film-forming material extracted from the red-sea weed (Dhanapal et al., 2012) and protects against moisture loss by acting as a sacrificial moisture layer (Kester and Fennema, 1986). It consist of a family of sulfonated polysaccharides of D-glucose and 3, 6-anhydro-D-galactose. Recently, carrageenan films were also found to be less opaque than those made of starch.

Produce	Coatings Types	Effect on Produce	References
Guava	Dextrons	Better properties as gas barrier, increase size,	Quezada-Gallo et al.,
		colour, aroma, water content	2005
	Potato Starch	Did not affect the pH, titratable acidity, and	
		sugars, soluble and total pectin, firmness, and	Boas et al., 2005
		values of chlorophyll a and b	
	Cellulose	Slowed softening, but fruits did not develop as	McGuire and Hallman,
		much colour, had a lower soluble solids, and	1995
		more prone to surface blackening	
Papaya	Aloe vera gel	Control PLW, ripening process (chemical	Marpudi et al., 2011
		changes, colour development and softening of	
		fruit tissue) and decay, increase the shelf life	I. () 0011
Cherry	Carboxy-	Reducing water loss, decrease the acidity	Lim et al., 2011
	methylcellulose	Descent lange of maintains and firming on a start	Mautinan Damana at al
	Aloe vera gel	Prevent loss of moisture and firmness, control	Martinez-Romero et al.,
		respiratory rate and maturation development, delay oxidative browning and reduce	2006; Ahmed et al., 2009
		delay oxidative browning and reduce microorganism proliferation	
Banana	Gum arabic and	Delayed color development and reduced the rate	Maqbool et al., 2011
Dallalla	Chitosan	of respiration and ethylene evolution,	Waq0001 et al., 2011
	Cintosan	maintaining the overall quality	
Pineapple	Chitosan	Extends the shelf-life	Talens et al., 2012
, meappie	Sodium alginate and	Control weight loss, preserve flesh firmness, and	Azarakhsh et al., 2012
	gellan gum	slow the respiration rate at $10\pm1^{\circ}$ C and 65% RH	Azarakiisii et al., 2012
	Alginate	Helped to retain internal liquids	Montero-Calderon et al.,
			2008
Apple	Aloe vera gel	Delayed the loss of total phenolics and ascorbic	Serrano et al., 2006
11	6	acid	
		Delayed the weight loss, colour changes,	Valverde et al., 2005
		accelerated softening and ripening, rachis	,
		browning, and high incidence of berry decay,	
		extend the storage life and reduce the initial	
		microbial counts	
	Carboxymethyl	Delayed browning more effectively when was	Baldwin et al., 1996
	cellulose (CMC)	applied in	
		an edible coating than in an aqueous solution	
	Lemongrass + oregano	Reduced native psychrophilic aerobes, moulds	Rojas-Grau et al., 2007
	oil + vanillin	and yeast. Ethylene production in the coated	
	incorporated in apple	apples remained below 50 μ L L ⁻¹ . Lemongrass	
	puree-alginate edible	(1.0-1.5%) and oregano $(0.5%)$ reduced >4 log	
	coating	CFU/g of inoculated <i>Listeria innocua</i>	Darchard M. II. (1
	Cinnamon + clove +	Effectively maintained the physicochemical	Raybaudi-Massilia et al.,
	lemongrass essential oils (Eos) incorporated	characteristics for more than 30 days, decreased the respiration rate, and reduced the <i>Escherichia</i>	2008b
	in alginate-based	<i>coli</i> O157:H7 population by about 1.23 log	
	edible coating	CFU/g at day 0, and extended the	
	cubic coating	microbiological shelf life by at least 19 days. The	
		addition of EOs at 0.7% (vol/vol) or their active	
		compounds at 0.5% (vol/vol) of their detive	
		increased its antimicrobial effect, reduced <i>the E</i> .	
		<i>coli</i> O157:H7 population by more than 4 log	
		CFU/g, and extended the microbiological shelf	
		life > 30 days.	
Grapes	Aloe vera gel	Prevent loss of moisture and firmness, control	Martinez-Romero et al.,
-		respiratory rate and maturation development,	2006; Ahmed et al., 2009
		delay oxidative browning and reduce	
		microorganism proliferation	
	HPMC	It slowed down weight losses and controlled the	Pastor et al., 2011
	(Hydroxypropyl-	oxygen consumption, had a better microbial	
	methylcellulose)	safety	
Melon	Alginate	Inhibited the microbial growth and reduced up to	Raybaudi-Massilia et al.,
		3.1 log CFU/g after 30 days of storage	2008a

Table 3. Applications of carbohydrate based coatings on fresh fruits and vegetables.

Imperial Journal of Interdisciplinary Research (IJIR) Vol-3, Issue-1, 2017 ISSN: 2454-1362, http://www.onlinejournal.in

	Methylcellulose	Reduced the growth <i>of mesophilic aerobes</i> , <i>psychrotrophs</i> , yeast and moulds and maintained the growth of <i>E. coli, Staphylococcus aureus</i> , <i>Salmonella</i> sp. <10 CFU/g	Krasaekoopt and Mabumrung, 2008
Strawberry	Chitosan–lemon essential oil	Slowed down the respiration rate and extend shelf-life at 5° C	Perdonesa et al., 2012
	Starch	Inhibited the growth of mesophilic aerobes, mold and yeast counts	Garcia et al., 2001
	1% Chitosan	Prevented microbial growth and reduced fruit weight changes	Campaniello et al., 2008
Mango	Cashew gum	Acts as a barrier to mass transport and reduced weight loss	Souza et al., 2010
	Mango pieces	Postponed weight loss, quality deterioration and prevented microbial growth	Chien et al., 2007
Litchi	Chitosan	Delay in weight change, quality deterioration and organoleptic characteristics and effectively reduced microbial population followed by expansion shelf life at 1° C	Dong et al., 2004
Pear	Methylcellulose	Prolonged shelf-life by retarding browning	Olivas et al., 2003
	Alginate, gellan	Prevented browning for 2 weeks	Oms-Oliu et al., 2008
	Chitosan	Reduced the growth of <i>Alternaria kikuchiana</i> and <i>Physalospora piricola</i>	Xianghong et al., 2010
Pistachio Nuts	Chitosan	Inhibited the growth of the <i>Aspergillus</i> , prevented moisture absorption and weight change	Maghsoudlou et al., 2012
Tomato	Chitosan	Resulted in firmness, less decay and less red pigmentation than the control	El-Ghaouth et al., 1992
Broccoli	Chitosan	Reduced all microbiological population, extended shelf life	Moreira Mdel et al., 2011
Garlic	Agar-agar + 0.2% chitosan + 0.2% acetic acid	Lower moisture loss, inhibited filamentous fungus and aerobic mesophilic, reduced respiration rate, lower the water vapor transmission	Geraldine et al., 2008
Carrot	Chitosan	Improved appearance and preserved the better colour and mechanical response	Vargas et al., 2008
	Starch coating	Enhances the efficiency of osmotic dehydration and increased the solid content by more than 30%	Lević et al., 2008
Artichoke seeds	Chitosan	Reduced the activity of various fungi and increased plants growth	Khalid et al., 2010

3. Conclusion

Edible coatings improve the external and internal quality characteristics of diverse commodities and also reduce dehydration and oxidation as well as the resulting undesirable changes in colour, flavour, and texture. Waxes and other coatings delay ripening and senescence of fresh produce and can increase the microbial stability. Coatings show promise as environmentfriendly quarantine treatments. It is comparatively low cost, easily handled post harvest treatment technology from point of view of producers as well as commercial users. Most coating materials are produced from renewable, edible resources and can be manufactured from waste products that represent disposal problems for other industries. More research and development efforts are required to develop edible coatings and also edible films that have good packaging performance besides being economical.

4. References

- Afolabi I.S. 2009. The preservative efficacies of bemul-wax coatings in combination with calcium chloride dip on low temperature stored *Citrus O. Sinensis*. Biokemistri. 211: 9-16.
- [2] Afolabi I.S., Baskaran R., Asha M.R., Aravinda-Prasad B., Ramana K.V.R. 2003. Development of edible coating 'bio-emulsion' for shelf life extension of mandarin oranges. Proc. 5th International Food Convention at Mysore, India, pp. 188-189.
- [3] Afolabi I.S., Oloyede O.B. 2011. Biochemical response of sweet potato to bemul-wax coating combined with calcium chloride treatment during ambient storage. Afr. J. Biotechnol. 1014: 2724-2732.
- [4] Afolabi I.S., Oloyede O.B. 2012. Mineral Compositions of an Edible Emulsion Bemul-Wax from Cassava *Manihot esculentum* Starch. British J. Appl. Sci. Technol. 21: 16-22.
- [5] Ahmed A.J., Singh Z., Khan A.S. 2009. Postharvest *Aloe vera* gel coating modulates fruit ripening and

quality of 'Arctic Snow' nectarine kept in ambient and cold storage. Int. J. Food Sci. Technol. 44: 1024-1033.

- [6] Avena-Bustillos R.J., Krochta J.M, Saltveit M.E., Rojas-Villegas R., Sauceda-Perez J.A. 1994. Optimization of edible coating formulations on zucchini to reduce water loss. J. Food Eng. 21: 197-214.
- [7] Avena-Bustillos R.J., Krochta J.M. 1993. Water vapor permeability of caseinate based edible films as affected by pH, calcium cross linking and lipid content. J. Food Sci. 58: 904–907.
- [8] Azarakhsh N., Osman A., Ghazali H.M., Tan C.P., Mohd Adzahan N. 2012. Optimization of alginate and gellan-based edible coatings formulations for fresh-cut pineapples. Int. Food Res. J. 191: 279-285.
- [9] Baldwin E.A. 1994. Edible coatings for fruits and vegetables: Past, present and future. In: Krochta J.M., Baldwin E.A., Nisperos-Carriedo M.O. (Eds.), Edible Coatings and Films to Improve Food Quality, Lancester. USA: Technomic Pub. Co. pp. 25-64.
- [10] Baldwin E.A., Nisperos M.O., Chen X., Hagenmaier R.D. 1996. Improving storage life of cut apple and potato with edible coating. Postharvest Biol. Technol. 9: 151-163.
- [11] Banks N.H. 1983. Evaluation of methods for the determining interval gases in banana fruit. J. Exp. Bot. 34: 871.
- [12] Bennett H. 1975. Industrial Waxes. New York: Chemical Pub. Co. Vol. 1.
- [13] Boas B.M.V., Nunes E.E., Silva W.A.da, Boas E.V. de B.V., Siqueira H.H. de, Pereira J. 2005. Postharvest quality of 'Pedro Sato' guavas coated with potato starch film. Rev. Bras. Armaz. 301: 91-96.
- [14] Bourtoom T. 2008. Review Article: Edible films and coatings: characteristics and properties. Int. Food Res. J. 153: 237-248.
- [15] Campaniello C.A., Bevilacqua M., Sinigaglia M.R. 2008. Chitosan: Antimicrobial activity and potential applications for preserving minimally processed strawberries. Food Microbiol. 25: 992-1000.
- [16] Cao N., Yuhua Fu., He J. 2007. Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydro. 21: 1153– 1162.
- [17] Carvalho-Filho C.D., Honorio S.L., Gil J.M. 2006. Post harvest quality of cherry cv. Ambrunes using edible coatings. Revi. Bra. Frut. 282: 180-184.
- [18] Cha D.S., Chinnan M. 2004. Biopolymer-based antimicrobial packaging: a review. Crit. Rev. Food Sci. Nutr. 44: 223- 237.
- [19] Chakraborty K., Ray S.K.D., Kabir, J. 2002. Influence of semperfresh coating on storage life of pointed gourd *Trichosanthes dioica* Roxb. J. Inter. 6: 486-489.
- [20] Chaynika G., Thakur K.S., Kaushal B.B.L. 2005. Effect of various post harvest treatments on the storage quality of peach cv. July Elberta. Acta Hort. 696: 509-517.
- [21] Chen P.M. 1986. Annual Report: Postharvest physiology of pome fruit in 1985. Mid-Columbia

Experiment Station. Oregon State Univ. Hood River OR.

- [22] Chien P., Sheu. F., Lin H. 2007. Coating citrus *Murcott tangor* fruit with low molecular weight chitosan increases postharvest quality and shelf life. Food Chem. 100: 1160–1164.
- [23] Chien P.J., Sheu F., Lin H.R. 2007. Quality assessment of low molecular weight chitosan coating on slices red pitayas. J. Food Eng. 19: 736-740.
- [24] Chu C.L. 1985. Post storage application of TAL Pro-long on apples from controlled atmosphere storage. Hortsci. 21: 267.
- [25] Chukwu E.U., Olorunda A.O., Ferris R.S.B. 1995. Extension of ripening period of Musa fruit using calcium chloride infiltration, Semperfresh and brilloshine 1 coating. Musa Afr. 8: 14-15.
- [26] Combrink J.C., Kock S.L. de., Eeden C.J. Van. 1990. Effect of post harvest treatment and packaging on the keeping quality of fresh guava fruit. Acta Hort. 275: 639-645.
- [27] Curtis G.J. 1988. Some experiment with edible coatings on the long term storage of citrus fruits.
 In: Goren R. Mendel K. (Eds.), Proc. 6th Intern. Citrus Cong., Weikershein: Margraf Scientific Books, D-6992. pp. 39-44.
- [28] Dang K.T.H. 2008. Edible coatings influence fruit ripening, quality, and aroma biosynthesis in mango fruit. J. Agric. Food Chem. 564: 361-1370.
- [29] Dávila-Aviña J., Esteban de Jesús, Villa-Rodríguez J., Cruz-Valenzuela R., Rodríguez-Armenta M., Espino-Díaz M., Ayala-Zavala J.F. 2011. Effect of edible coatings, storage time and maturity stage on overall quality of tomato fruits. Amer. J. Agric. Biol. Sci. 61: 162-171.
- [30] Debeaufort F., Quezada-Gallo J.A., Voilley A. 1998. Edible films and coatings: tomorrow's packaging: a review. Crit. Rev. Food Sci. Nutr. 38: 299-313.
- [31] Dhanapal A., Sasikala P., Rajamani L., Kavitha V., Yazhini G., Shakila Banu M. 2012. Edible films from Polysaccharides. Food Sci. Qual. Manag. 3: 9-17.
- [32] Dong H., Cheng L., Tan J., Zheng K., Jiang Y. 2004. Effects of chitosan coating on quality and shelf life of peeled litchi fruit. J. Food Eng. 64: 355–358.
- [33] Drake S.R., Fellman J.K., Nelson J.W. 1987. Postharvest use of sucrose polyester for extending the shelf life of stored golden delicious apples. J. Food Sci. 52: 685-690.
- [34] El-Ghaouth A., Ponnampolam R., Castalgne F., Arul J. 1992. Chitosan coating to extend the storage life of tomatoes. Hortsci. 27: 1061-1018.
- [35] Eshun K., He Q. 2004. Aloe Vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries a review. Crit. Rev. Food Sci. Nutr. 44: 91-96.
- [36] Esua M.F., Rauwald J.W. 2006. Novel bioactive maloyl glucans from *Aloe vera* gel: isolation, structure elucidation and *in vitro* bioassays. Carbo. Res. 273: 355-364.
- [37] Eum H.L., Hwang D.K., Linke M., Lee S.K., Zude M. 2009. Influence of edible coating on quality of

plum *Prunus salicina* Lindl. cv. 'Sapphire'. Eur. Food Res. Technol. 229: 427-434.

- [38] Fabra M.J., Talens P., Chiralt A. 2008. Tensile properties and water vapour permeability of sodium caseinate films containing oleic acid– beeswax mixtures. J. Food Eng. 85: 393–400.
- [39] Fuchs S.J., Mattinson D.S., Fellman J.K. 2008. Effect of edible coatings on postharvest quality of fresh green asparagus. J. Food Proc. Pres. 32: 951-971.
- [40] Ganz A.J. 1977. Cellulose hydrocolloids. In: Graham H.P. (Ed.), Food Colloids. Westport: Ct, AVI Pub. Co. 383 pp.
- [41] Gao C., Taylor J., Wellner N., Byaruhanga Y.B., Parker M.L., Clare-Mills E.N., Belton P.S. 2005. Effect of preparation conditions on protein secondary structure and biofilm formation of kafirin. J. Agric. Food Chem. 532: 306–312.
- [42] Garcia M.A., Martino M.N., Zaritzky N.E. 2001. Composite starch-based coatings applied to strawberries *Fragaria ananassa*. Nahrung/Food. 45: 267-272.
- [43] Gennadios A., Hanna M.A., Kurth L.B. 1997. Application of edible coatings on meat, poultry and seafoods: a review. Leb. Wiss. Technol. 30: 337-350.
- [44] Gennadios A., McHugh T.H., Weller C.L., Krochta J.M. 1994. Edible coatings and films based on proteins. In: Krochta J.M., Baldwin E.A. Nisperos-Carriedo M.O. (Eds.), Edible Coatings and Films to Improve Food Quality, Lancaster: Technomic Publishing Co. p. 201.
- [45] Gennadios A., Weller C.L. 1990. Edible films and coatings from wheat and corn proteins. Food Technol. 4410: 63-69.
- [46] Gennadios A., Weller C.L., Testin R.F. 1993. Temperature effect on oxygen permeability of edible protein- based films. J. Food Sci. 58: 212.
- [47] Gennadios A., Weller C.L., Testin R.F. 1993a. Modification of physical and barrier properties of edible wheat gluten-based films. Cere. Chem. 70: 426-9.
- [48] Geraldine R.M., Soares Nilda de F.F., Botrel D.A., Gonçalves Leticia de A. 2008. Characterization and effect of edible coatings on minimally processed garlic quality. Carbo. Poly. 723: 403-409.
- [49] Ghidelli C., Sanchís E., Argudo C.R., Mateos M., del Río M.A., Pérez-Gago M.B. 2010. Application of soy protein-beeswax edible coating with antioxidants: effect reducing enzymatic browning of fresh-cut eggplants. Proc. VI International Postharvest Symposium, Acta Hort. 8773, pp. 591-596.
- [50] Goldstein J.L., Newbury D.E., Echlin P., Joy D.C., Romig A.D., Lyman C.E., Fiori C., Lifshin E. 1992. Scanning Electron Microscopy and X-Ray Microanalysis, 2^{ed} New York: A Division of Plenum Publishing Corporation, pp. 571-599.
- [51] Gómez-Guillén M.C., Giménez B., López-Caballero M.E., Montero M.P. 2011. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydro. 25: 1813-1827.

- [52] Gontard N., Duchez C., Cuq J.L., Guilbert S. 1993. Edible composite films of wheat gluten and lipids: water vapor permeability and other physical properties. Int. J. Food Sci. Technol. 29: 39-50.
- [53] Griffin W.C. 1979. Emulsions. In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., New York: John Wiley and Sons, 8: 913-916.
- [54] Hagenmaier R.D., Baker R.A. 1994. Wax micro emulsions and emulsions as citrus coatings. J. Agric. Food Chem. 42: 899-902.
- [55] Hagenmaier R.D., Shaw P.E. 1992. Gas permeability of fruit coating waxes. J. Amer. Soc. Hort. Sci. 117: 105.
- [56] Hassani F., Garousi F., Javanmard M. 2012. Edible coating based on whey protein concentrate-rice bran oil to maintain the physical and chemical properties of the kiwifruit *Actinidia deliciosa*. Trakia J. Sci. 101: 26 34.
- [57] Hernandez E. 1991. Edible coatings from lipids and resins. In: Krochta J.M., Baldwin E.A., Nisperos-Carriedo M.O. (Eds.), Edible Coatings and Films to Improve Food Quality, Pennsylvania: Technomic Publishing Co. Inc. pp. 279-303.
- [58] Jacomino A.P., Ojeda R.M., Klude R.A., Scarpare Filho J.A. 2003. Post-harvest conservation of guavas through carnauba wax emulsion application. Rev. Bra. Frut. 253: 401-405.
- [59] Jagadeesh S.L., Rokhade A. 1998. Effect of post harvest treatments on keeping quality of guava *Psidium guajava* L. fruits cv. Sardar-1. Kar. J. Agric. Sci. 114: 1003-1008.
- [60] Jongjareonrak A., Benjakul S., Visessanguan W., Prodpran T., Tanaka M. 2006. Characterization of edible films from skin gelatin of brown stripe red snapper and big eye snapper. Food Hydro. 204: 492–501.
- [61] Jooyandeh H. 2011. Whey Protein Films and Coatings: A Review. Pak. J. Nutr. 103: 296-301.
- [62] Kabir J., Ghosh B., Dutta S.K., Mitra S.K. 1994. Postharvest use of edible coatings on shelf life of tomato. Indian Food Pack. 49: 25-28.
- [63] Kendra F.D., Christian D., Hadwiger L.A. 1989. Chitosan oligomers from *Fusarium solani*/ pea interactions, chitinase/β-glucanase digestion of sporelings and from fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiol. Mol. Plant Pathol. 35: 215-230.
- [64] Kester J.J., Fennema O.R. 1986. Edible films and coatings: a review. Food Technol. 40: 47.
- [65] Khalid Z., Ursúa B., Maté J.I. 2010. Application of bioactive coatings based on chitosan for artichoke seed protection. Crop Prot. 29: 853-859.
- [66] Khwaldia K., Ferez C., Banon S., Desobry S., Hardy J. 2004. Milk proteins for edible films and coatings. Crit. Rev. Food Sci. Nutr. 444: 239-251.
- [67] Kore V.T., Kabir J. 2011. Influence of waxing and polyethylene packaging on shelf life of guava. Crop Res. 411, 2 and 3: 98-102.
- [68] Krasaekoopt W., Mabumrung J. 2008. Microbiological evaluation of edible coated freshcut cantaloupe. Kasetsart J. Nat. Sci. 42: 552-557.
- [69] Krochta J.M., Avena-Bustillos R.J., Cisneros-Zevallos L.A., Saltveit M.E. 1993. Optimization of edible coatings on minimally processed carrots

using response surface methodology. Trans Amer. Soc. Agric. Eng. 363: 801-805.

- [70] Labuza T., Contrereas-Medellin. 1981. Prediction of moisture protection requirements for foods. Cereal Food World. 26: 335.
- [71] Lee J.Y., Park H.J., Lee C.Y., Choi W.Y. 2003. Extending shelf life of minimally processed apples with edible coatings and antibrowning agents. Leb. Wiss. Technol. 36: 323-329.
- [72] Lerdthanangkul S., Krochta J.M. 1996. Edible coating effects on postharvest quality of green bell peppers. J. Food Sci. 611: 176-179.
- [73] Lević L.B., Koprivica G.B., Mišljenović N.M., Filipčev B.V., Šimurina O.D., Kuljanin T.A. 2008. Effect of starch as an edible coating material on the process of osmotic dehydration of carrot in saccharose solution and sugar beet molasses. *APTEFF* 39: 29-36.
- [74] Lim R., Stathopoulos C.E., Golding J.B. 2011. Effect of edible coatings on some quality characteristics of sweet cherries. Int. Food Res. J. 184: 1237-1241.
- [75] Lima Á.M., Cerqueira M.A., Souza B.W.S., Santos Ed Carlos M., Teixeira J.A., Moreira R.A., Vicente A.A. 2010. New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits- Influence on fruits gas transfer rate. J. Food Eng. 97: 101-109.
- [76] López-Caballer M.E., Gómez-Guillén M.C., Pérez-Mateos M., Montero P. 2005. A chitosan-gelatin blend as a coating for fish patties. Food Hydro. 19: 303-311.
- [77] Lorenzen P.C. 2007. Effects of time/temperatureconditions of pre-heating and enzymatic crosslinking on thermo-functional properties of reconstituted dairy ingredients. Food Res. Intern. 40: 700-708.
- [78] Maghsoudlou A., Maghsoudlou Y., Khomeiri M., Ghorbani M. 2012. Evaluation of anti-fungal activity of chitosan and its effect on the moisture absorption and organoleptic characteristics of pistachio nuts. Intern. J. Adv. Sci. Eng. Inf. Technol. 24: 65-69.
- [79] Mancini F., McHugh T.H. 2000. Fruit-alginate interactions in novel restructured products. Food / Nahrung, 443: 152-157.
- [80] Marpudi S.L., Abirami L.S.S., Pushkala R., Srividya N. 2011. Enhancement of storage life and quality maintenance of papaya fruits using *Aloe vera* based edible antimicrobial coating. Indian J. Biotechnol. 10: 83-89.
- [81] Martinez-Romero D.L., Alburquerque N., Valverde J.M., Guillen F., Castillo S. 2006. Post harvest cherry quality and safety maintenance by *Aloe vera* treatment: A new edible coating. Postharvest Biol. Technol. 39: 93-100.
- [82] Martin-Polo M., Voilley A., Blond G., Colas B., Mesnier M., Floquet N. 1992. Hydrophobic films and their efficiency against moisture transfer. 2. Influence of the physical state. J. Agric. Food Chem. 40: 413.
- [83] Maynes J.R., Krochta M. 1994. Properties of edible films from total milk protein. J. Food Sci. 59: 909.
- [84] McGuire R.G., Hallman G.J. 1995. Coating guavas with cellulose or carnauba based emulsion

interferes with post-harvest ripening. Hortsci. 302: 294-295.

- [85] McHugh T.H., Krochta J.M. 1994. Milk protein based edible films. Food Technol. 481: 97-107.
- [86] Mehyar G.F., Al-Ismail K., Han J.H., Chee G.W. 2012. Characterization of edible coatings consisting of pea starch, whey protein isolate, and carnauba wax and their effects on oil rancidity and sensory properties of walnuts and pine nuts. J. Food Sci. 772: 52-59.
- [87] Mendes de Souza P., Fernández A., López-carballo G., Gavara R., Hernandez- Muñoz P. 2010. Modified sodium caseinate films as releasing carriers of lysozyme. Food Hydro. 244: 300-306.
- [88] Moller H., Grelier S., Pardon P., Coma V. 2004. Antimicrobial and physicochemical properties of chitosan-HPMC-based films. J. Agric. Food Chem. 52: 6585-6591.
- [89] Montero-Calderon M., Rojas-Grau M.A., Martin-Belloso O. 2008. Effect of packaging conditions on quality and shelf-life of fresh-cut pineapple *Ananas comosus*. Postharvest Biol. Technol. 50: 182-189.
- [90] Moreira Mdel R., Ponce A., Ansorena R., Roura S.I. 2011. Effectiveness of edible coatings combined with mild heat shocks on microbial spoilage and sensory quality of fresh cut broccoli *Brassica oleracea* L. J. Food Sci. 766: 367-74.
- [91] Morillon V., Debeaufort F., Blond G., Capelle M., Voilley A. 2002. Factors affecting the moisture permeability of lipid-based edible films: a review. Crit. Rev. Food Sci. Nutr. 42: 67- 89.
- [92] Mota W.F. da, Salomao L.C.C., Neres C.R.L., Mizobutsi G.P., Neves L.L. de M. 2006. Use of carnauba wax and plastic film on post-harvest conservation of the yellow passion fruit. *Revista-Brasileira-de-Fruticultura* 282: 190-193.
- [93] Nisperos-Carriedo M.O. 1994: Edible coatings and films based on polysaccharides. In: Krochta J.M., Baldwin E.A. Nisperos-Carriedo M.O. (Eds.), Edible coatings and films to improve food quality, Lancaster, PA: Technomic Publishing Company. pp. 305-335.
- [94] Nisperos-Carriedo M.O., Baldwin E.A., Shaw P.E. 1991. Development of an edible coating for extending postharvest life of selected fruits and vegetables. Proc. of the Florida State Horticultural Society, 104: 122-125.
- [95] Ochoa E., Saucedo-Pompa S., Rojas-Molina R., Heliodoro de la Garza, Charles-Rodríguez A.V., Aguilar C.N. 2011. Evaluation of a candelilla waxbased edible coating to prolong the shelf-life quality and safety of apples. Amer. J. Agric. Biol. Sci. 61: 92-98.
- [96] Olivas G.I., Rodriguez J.J., Barbosa-Cánovas G.V. 2003. Edible coatings composed of methylcellulose, stearic acid and additives to preserve quality of pear wedges. J. Food Proc. Pres. 27: 299-320.
- [97] Oms-Oliu G., Soliva-Fortuny R., Martin-Belloso O. 2008. Edible coatings with antibrowning agents to maintain sensory quality and antioxidant properties of fresh-cut pears. Postharvest Biol. Technol. 50: 87-94.
- [98] Onwulata C.H.P. 2008. Whey processing, functionality and health benefits, IFT Press Series,

Variation: IFT Press Series, Wiley- Blackwell, Ames, Iowa, USA.

- [99] Onwulata C.I.H., Peter J. 2008. Whey Processing-Functionality and Health Benefits, vol. 1, Iowa, USA: Wiley-Blackwell, Ames.
- [100] Oosthuyse S.A. 1997. Effect of waxing and a number of waxes on weight loss, shelf life and fruit quality of mangoes after four week of cool-storage. Yearbook South Afr. Mango Growers Assoc. 17: 105-110.
- [101] Ou S.Y., Kwok K.C., Kang Y.J. 2004. Changes in in-vitro digestibility and available lysine of soy protein isolate after formation of film. J. Food Eng. 643: 301-305.
- [102] Oz A.T., Ulukanli Z. 2012. Application of edible starch-based coating including glycerol plus *Oleum nigella* on arils from long-stored whole pomegranate fruits. J. Food Proc. Pres. 361: 81–95.
- [103] Ozden C., Bayindirli Z. 2002. Effects of combinational use of controlled atmosphere, cold storage and edible coating application on shelf life and quality attributes of green peppers. Eur. Food Res. Technol. 2144: 320-326.
- [104] Park H.J., Chinnan M.S., Shewfelt R.L. 1994. Effect of corn-zein film coating on the storage life of tomatoes. J. Food Proc. Pres. 18: 317-31.
- [105] Park H.J., Chinnan M.S., Shewfelt R.L. 1994a. Edible coating effects on storage life and quality of tomatoes. J. Food Sci. 593: 568-570.
- [106] Paschoalick T.M., Garcia F.T., Sobral P.J.A., Habitante A.M.Q.B. 2003. Characterization of some functional properties of edible films based on muscle proteins of Nile tilapia. Food Hydro. 17: 419-427.
- [107] Pastor C., Sánchez-González L., Marcilla A., Chiralt A., Cháfer M., González-Martínez C. 2011. Quality and safety of table grapes coated with hydroxyl-propyl-methyl-cellulose edible coatings containing propolis extract. Postharvest Biol. Technol. 601: 64-70.
- [108] Perdonesa A., Sánchez-Gonzáleza L., Chiralt A., Vargas M. 2012. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of Strawberry. Postharvest Biol. Technol. 70: 32-41.
- [109] Pereda M., Aranguren M.I., Marcovich N.E. 2010. Caseinate films modified with tung oil. Food Hydro. 248: 800-808.
- [110] Perez-Gago M.B., Serra M., del Rio M.A. 2006. Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biol. Technol. 39: 84-92.
- [111] Petracek P.D., Montalvo L., Dou H., Davis C. 1998. Postharvest pitting of 'Fallglo' tangerine. J. Amer. Soc. Hort. Sci. 123: 130-135.
- [112] Prodpran T., Benjakul S. 2005. Effect of acid and alkaline solubilization on the properties of surimi based film. Songklanakarin J. Sci. Technol. 27: 563-574.
- [113] Quezada-Gallo J.A., Gramin A., Pattyn C., Diaz-Amaro M.R., Debeaufort F., Voilley A. 2005. Biopolymers used as edible coating to limit water transfer, colour degradation and aroma compound 2-Pentanone lost in Mexican fruits. Acta Hort. 6823: 1709-1716.

- [114] Ramos O.L., Fernandes J.C., Silva S.I., Pintado M.E., Malcata F.X. 2012. Edible films and coatings from whey proteins: a review on formulation, and on mechanical and bioactive properties. Crit. Rev. Food Sci. Nutr. 526: 533-52.
- [115] Raybaudi-Massilia R.M., Mosqueda-Melgar J., Martin-Belloso O. 2008a. Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Intern. J. Food Microbiol. 121: 313-327.
- [116] Raybaudi-Massilia R.M., Rojas-Grau M.A., Mosqueda-Melgar J., Martin-Belloso O. 2008b. Comparative study on essential oils incorporated into an alginate-based edible coating to assure the safety and quality of fresh-cut Fuji apples. J. Food Prot. 71: 1150-1161.
- [117] Rhim J.W. 2004. Physical and mechanical properties of water resistant sodium alginate films. Leb. Wiss. Technol. 373: 323-330.
- [118] Ricardo D., Andrade O.S., Osorio F.A. 2012. Atomizing Spray Systems for Application of Edible Coatings. Compr. Rev. Food Sci. Food Saf. 113: 323-337.
- [119] Rodriguez de Jasso D., Hernandez-Castillo D., Rodriguez-Gracia R., Angulo-Sanchez J.L. 2005. Antifungal activity in vitro of *Aloe vera* pulp and liquid fraction against pathogenic fungi. Ind. Crops Prod. 21: 81-87.
- [120] Rojas-Grau M.A., Raybaudi-Massilia R.M., Soliva-Fortuny R.C., Avena-Bustillos R.J., McHugh T.H., Martin-Belloso O. 2007. Apple pureee alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of freshcut apples. Postharvest Biol. Technol. 45: 254-264.
- [121] Romero-Bastida C.A., Bello-Pérez L.A., García M.A., Martino M.N., Solorza-Feria J., Zaritzky N.E. 2005. Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbo. Poly. 602: 235-244.
- [122] Sabir S.M., Shah S.Z.A., Abida-Afzal. 2004. Effect of chemical treatment, wax coating, oil dipping and different wrapping materials on physicochemical characteristics and storage behaviour of apple *Malus domestica* Barkh. Pak. J. Nutr. 32: 122-127.
- [123] Salvatori D., Andres A., Albors A., Chiralt A., Fito P. 1998. Structural and compositional profiles in osmotically dehydrated apple. J. Food Sci. 634: 606-610.
- [124] Saxena A., Sachin K., Bohidar H.B., Verma A.K. 2005. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nanoparticles. Colloids and Surfaces B: Biointerfaces 45: 42-48.
- [125] Schmid M., Dallmann K., Bugnicourt E., Cordoni D., Wild F., Lazzeri A., Noller K. 2012. Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. Intern. J. Pol. Sci. 7 pp, DOI:10.1155/2012/562381.
- [126] Schultz T.H., Miers J.C., Owens H.S., Maclay W.N. 1949. Permeability of pectinase film to water vapor. J. Phy. Coll. Chem. 53: 1320.
- [127] Serrano M., Valverde J.M., Guillén F., Castillo S., Martínez-Romero D., Valero D. 2006. Use of *Aloe*

vera gel coating preserves the functional properties of table grapes. J. Agric. Food Chem. 5411: 3882-3886.

- [128] Shasahikala P., Suresh C.P., Dhua R.S., Kabir J. 2002. Influence of stayfresh on shelf life of tomato. Haryana J. Hort. Sci. 31: 300-301.
- [129] Shiku Y., Hamaguchi P.Y., Tanaka M. 2003. Effect of pH on the preparation of edible films based on fish myofibrillar proteins. Fish Sci. 69: 1026-1032.
- [130] Siripatrawan U., Harte B.R. 2010. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydro. 24: 770-775.
- [131] Sitanggang A.B., Sophia L., Wu H.S. 2012. Mini Review: Aspects of glucosamine production using microorganisms. Int. Food Res. J. 192: 393-404.
- [132] Souza M.P., Cerqueira M.A., Souza B.W.S., Teixeira J.A., Porto A.L.F., Vicente A.A. 2010. Polysaccharide from *Anacardium occidentale* L. tree gum Policaju as a coating for Tommy Atkins mangoes. Chem. Papers. 644: 475-481.
- [133] Sugano M., Yoshida K., Hashimoto M., Enomoto K., Hirano S. 1992. Hypocholesterolemic activity of partially hydrolyzed chitosans in rats. In: Brine C.J., Sandford P.A., Zikakis J.P.(Eds.), Advances in Chitin and Chitosan, London, UK: Elsevier. pp. 472-478.
- [134] Suhaila M., Khan M.M.K., Idris A.Z., Salmah., Azizah O. 1992. Effect of various surface treatments palm oil, liquid paraffin, Semperfresh or starch surface coatings and LDPE wrapping on the storage life of guava *Psidium guajava* L. at 10^oC. Acta Hort. 321: 786-794.
- [135] Talens P., Pérez-Masía R., Fabra M.J., Vargas M., Chiralt A. 2012. Application of edible coatings to partially dehydrated pineapple for use in fruitcereal products. J. Food Eng. 112: 86–93.
- [136] Tang R., Du Y., Zheng H., Fan L. 2003. Preparation and characterization of soy protein isolate–carboxymethylated konjac glucomannan blend films. J. Appl. Pol. Sci. 888: 1095-1099.
- [137] Tharanathan R.N. 2003. Biodegradable films and composite coatings: past, present and future. Trends Food Sci. Technol. 14: 71-78.
- [138] Tien C.L., Vachon C., Mateescu M.A., Lacroix M. 2001. Milk protein coatings prevent oxidative browning of apples and potatoes. J. Food Sci. 664: 512.
- [139] Tokoro A., Tatewaki N., Suzuki K., Mikami T., Suzuki S., Suzuki M. 1988. Growth-inhibitory effect of hexa-N-acetylchitohexaose and

chitohexaose against Meth-A solid tumor. Chem. Pharmac. Bull. 36: 784-790.

- [140] Torgul H., Arslan N. 2005. Carboxy-methyl cellulose from sugar beet pulp cellulose as a hydrophilic polymer in coating of apple. J. Food Sci. Technol. 422: 139-144.
- [141] Tsai G., Zhang S., Shieh P. 2004. Antimicrobial activity of a low molecular weight chitosan obtained from cellulose digestion of chitosan. J. Food Prot. 67: 396-398.
- [142] Valverde J.M., Valero D., Martínez-Romero D., Guillén F., Castillo S., Serrano M. 2005. Novel edible coating based on *Aloe vera* gel to maintain table grape quality and safety. J. Agric. Food Chem. 5320: 7807-13.
- [143] Vargas M., Chiralt A., Albors A., González-Martínez C. 2008. Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biol. Technol. 512: 263-271.
- [144] Walstra P. 2003. Physical chemistry of foods. In: Walstra P. (Ed.), Marcel Dekker, New York, 807 pp.
- [145] Xianghong M., Lingyu Y., John F., Kennedy T. 2010. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbo. Poly. 10: 83-84.
- [146] Yang E., Zhao Y., Qian M.C. 2010. Effect of edible coating on volatile compounds of hardy kiwifruit during storage. Flavor and Health Benefits of Small Fruits ACS Symposium Series, 1035, Chapter 6, pp. 79–94. DOI: 10.1021/bk-2010-1035.ch006.
- [147] Yang H., Wang Y. 2009. Effects of concentration on nano structural images and physical properties of gelatin from channel catfish skins. Food Hydro. 23: 577-584.
- [148] Yang L., Paulson A.T. 2000. Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food Res. Intern. 33: 571-578.
- [149] Zaritzky N. 2011. Edible coatings to improve food quality and safety. Food Engineering Interfaces Food Engineering Series, Part 5, pp. 631-659, DOI: 10.1007/978-1-4419-7475-4_27.
- [150] Zhang H., Mittal G. 2010. Biodegradable proteinbased films from plant resources: A review. Env. Prog. Sust. Ene. 292: 203-220.
- [151] Zhou R., Li Y., Yan L., Xie J. 2011. Effect of edible coatings on enzymes, cell- membrane integrity, and cell-wall constituents in relation to brittleness and firmness of Huanghua pears *Pyrus pyrifolia* Nakai, cv. Huanghua during storage. Food Chem. 124: 569-575.