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Abstract: Nowadays, food is no longer just for nutrition. Consumers are more demanding and expect
to get health benefits from their daily meals. Various areas of the food industry are in great demand
of functional chemicals to enhance the taste and nutritional value of their products. Probiotic bacteria
have already been part of the human’s routine for good gut microbiota maintenance in terms of
pharmaceutical products. Their incorporation in food however is a challenging task that offers great
opportunities but has limitations as well. Specifically, the purpose of this review is to emphasize
the importance of probiotics in food, to assess their survival through gastrointestinal tract, and to
highlight the recent advances in approaches for their improved viability.
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1. Introduction

Nowadays, food is no longer regarded as a nutritional portion. The general perception
is that food has a direct impact on a person’s health. Therefore, the consumer’s require-
ments towards the quality of their meal already include the presence of active components
that have the potential to modulate to bring benefits to the body. As a result, the key to
effective marketing and adoption of innovative foods is not only the notion of food quality
across the supply chain but also the addition of value-added food functionality. Therefore,
foods are not simply seen as having the capability to satiate hunger, but also have the addi-
tional capability to improve physical and mental health and to keep consumers free from
nutritional disorders [1–3]. Due to the increased life expectancy and rising healthcare costs
associated with an ageing population, so-called functional foods are becoming increasingly
popular among health-conscious people [4–6].

The word “functional” is often used to refer to food products that are believed to
have particular physiological benefits that are useful to the human body in some way [7–9].
Functional foods, as opposed to pills or capsules, must demonstrate their health benefits
when consumed as a part of a balanced diet. Yet, there is no universally agreed definition
of what constitutes a functional food. Furthermore, there is no formal definition for this
phrase, and in most countries, there is a distinction between conventional and functional
foods [9–12]. Some functional foods are made by altering processing methods or adding
chemicals to foods. When it comes to bioactive components, the features of a product can be
custom-tailored to treat an illness or help enhance general health. The functional ingredient
in foods could come from the addition of different phytochemicals, such as antioxidants,
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vitamins, fibers, minerals, omega-3-fatty acids, etc. It could be, also, live cells of “good”
microorganisms. The latter are called probiotics. They are more precisely described as
live bacteria that, when supplied in sufficient proportions, can provide health advantages
by maintaining the balance of microorganisms in the human gastrointestinal tract (GIT),
preventing various diseases, and boosting the host immune system [13]. However, the
quality of most commercial probiotic meals is variable in terms of live probiotic count and
often does not satisfy their label claims for strain type. When probiotic microorganisms are
swallowed, they provide a health benefit to the host, albeit the advantages vary depending
on the species or strain. The majority of the benefits linked to probiotics are related to
the preservation of normal intestinal flora, demonstrating the ability to live through the
upper gastrointestinal system as well as the ability to survive and develop in the intestinal
region [14].

The growing application of microorganisms in food formulations requires the adoption
of uniform criteria for their classification as probiotics. A general terminology consensus
between science, food producers, regulators, and consumers is needed. In order to consider
a given strain as a probiotic, several steps should be carried out [15]. The candidate should
be fully characterized and safe for human consumption. It must possess at least one proven
beneficial effect for the human body, and must remain alive through product manufacturing
and storage [15]. The European Food Safety Authority (EFSA) has maintained a list
of species presumed to be safe for human consumption in foods under the “Qualified
Presumption of Safety” (QPS) concept since 2007 [16]. In Europe, if a strain does not belong
to a QPS species then it must follow the Novel Food regulation before being brought
to market [16]. The U.S. Food and Drug Administration adopted the term “generally
recognized as safe” (GRAS). A substance may be GRAS only if its general recognition of
safety is based on the views of experts qualified to evaluate the safety of the substance [17].
With regard to encapsulated probiotics in the food industry, it should be noted that only
approved for human consumption encapsulating materials are allowed to be used [18].

The most studied and implemented probiotic microorganisms belong to the group of
lactic acid bacteria, bifidobacteria, and yeasts [19]. Strains of Streptococcus and Enterococcus
are also in use. Probiotics have been implemented in a wide range of food products,
including dairy products, meat, beverages, cereals, vegetables, and fruits, as well as bread
goods [20,21]. The effective functioning of probiotics, however, is greatly dependent on
their viability and activity, and these need to be maintained at high levels [22]. When
probiotics are subjected to harsh environmental conditions, like food processing and
storage, their viability is greatly diminished [23–25]. At the same time, the safety profile
with the use of live microorganisms is still a sensitive matter and no agreement exists [25].
More reliable in vivo studies are needed in this regard. So far, studies have demonstrated
good strain-specific correlation between in vitro and in vivo assays in prediction of the
immunomodulatory properties of lactic acid bacteria [26,27]. Nevertheless, in parallel,
studies on how to keep the cells alive through the gastrointestinal tract are required.

The search for appropriate methods for protecting probiotic cells has led to the devel-
opment of many technologies, and microencapsulation is the most significant one. The
process of probiotic microencapsulation has been reported in several studies and it gained
much attention in the encapsulation techniques using a variety of processes, including
emulsification, extrusion, and spray drying [28–31]. However, a careful assessment of the
effects of all chemicals and conditions on the probiotic bacteria is required.

This review attempts to present a more contemporary scientific and technical eval-
uation of probiotics as functional foods. In particular, the review focuses on probiotics’
improved qualities and their capacity to keep longer under encapsulated and unencapsu-
lated probiotic products. Furthermore, a comprehensive analysis of food matrix features
and probiotic bacteria, as well as their viability, survival, and viability enhancement will
be conducted.
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2. Probiotics in Food Products

Foods having functional qualities, particularly those containing bioactive chemicals
or containing probiotics, have been developed in response to the increased need for a
more nutritious diet. When probiotics are consumed in sufficient quantities, they provide
health benefits to the individual ingesting them [32]. Many beneficial effects of these
microbes have been discovered, most of which are related to gastrointestinal health and the
immune system, but also to diabetes, obesity, and hypercholesterolemia as well as cancer,
to name a few examples [33]. Several sectors of the food industry and researchers have all
become interested in the global probiotic market, with the main focus being on developing
novel probiotic-rich food products and conducting in-depth research on specific probiotic
properties and their impact on human health [34]. Although the aforementioned has almost
the statute of postulate, the official report of the American Gastroenterological Association
on the role of probiotics in the management of gastrointestinal disorders identified that
significant knowledge gaps exist [14].

In order to receive health benefits associated with probiotics, the viability of probiotics
in food is required. In most cases, only animal or clinical research can be used to determine
whether or not probiotic cultures are beneficial to the host’s health. As a result, the viability
test for probiotics is the most feasible quality assurance test [35,36]. The presence of
probiotics in excess of viable cells per day has typically been linked to health benefits in
clinical research. A recent study discussed how food supplements including probiotics
could meet present technological hurdles and meet enhanced functionality and sensory
acceptances while looking ahead to upcoming developments [32,37]. In Figure 1, the basic
criteria for selecting suitable probiotic strains for specific applications are shown. These are
functional, safety, technological and physiological criteria. The main sources can be from
probiotic or symbiotic products or from intestinal origin.
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2.1. Selection and Identification of Probiotic Strains

Isolating, evaluating, and characterizing new probiotic candidates require a holistic,
multi-step approach. The main selection criteria for probiotics are based on many func-
tional properties, such as tolerance to gastric acidity, bile and phenol toxicity, and the ability
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to deconjugate bile salts [38]. In addition, new probiotics should be selected based on
the strain’s characteristics. Therefore, new methods are needed to select and characterize
probiotic strains. In this regard, molecular techniques are of particular importance [39].
Bioactive produced by probiotics could help to prevent spoilage of food, increase nutri-
tional value, improve aroma and sensory qualities, and detoxify foods. When it comes to
bioactive synthesis, there are differences between species and strains [40]. The synthesis of
exopolysaccharides (EPS) or bile salt hydrolase (BSH), for example, differs significantly
between species and within strains within a given species. With available outcomes, it is
impossible to assume that all lactobacilli, or even all strains of a given species, generate the
same amount of a given metabolite. The foremost step in assuring functionality is to define
it [32].

2.2. Functionality of Probiotics

Many scientific reports demonstrate the positive effects for the intestinal tract of
inactivated probiotic cells. In their review, Piqué et al. [25] gathered recent studies of the
use of heat-treated probiotic cells, cell-free supernatants, or purified key components as a
provider of mainly immunomodulatory effects, protection against enteropathogens, and
maintenance of intestinal barrier integrity.

Apart from the ongoing debate over whether live probiotics are ultimately completely
safe to consume, most scientific reports continue to study the positive effects of viable
probiotic cells in the GIT. So far, the main focus has been on the direct outcomes of
gastrointestinal disorders. Lactobacillus rhamnosus is frequently reported to reduce the
risk of antibiotic-associated diarrhea in children [41,42]. The strains Lactobacillus bulgaricus,
Lactobacillus plantarum, and Streptococcus thermophilus exerted significant anti-inflammatory
potential [43,44]. Moreover, a meta-analysis on the use of probiotic bacteria in cancer
patients undergoing chemotherapy and radiation therapy revealed encouraging results
about the prevention of radiation-induced diarrhea [45,46]. Many studies focus on the
possible beneficial effect of probiotic administration and autism spectrum disorder [47],
cardiometabolic disorders and chronic kidney disease [48], skin disorder management [49].
Preliminary findings on the relationship between probiotics and cognitive and behavioral
processes (neurological, metabolic, hormonal and immunological signaling pathways) arise
the hope of new application for these microorganisms to serve as psychobiotics [50].

2.3. Survival Assessment and Viability

When discussing the survival of probiotics two aspects should be considered. The first
one is whether the selective strains are initially able to survive through the gastrointestinal
tract and then, do they remain viable through the food manufacturing process. Most of the
commercially implemented probiotics were isolated from milk and dairy products, so it
is not surprising that these products are today considered the main functional food [51].
The low gastric pH tolerance and high bile salt concentrations are the most important
criteria for the selection of the probiotic strains [52]. On the other hand, the choice of food
matrix and further processing conditions are crucial for their survival. It is also critical to
ensure that probiotic food products contain the minimum recommended level of probiotics
(106–107 CFU/mL product [53]) in the final product. This level of probiotics should be
maintained throughout the product’s shelf life because the number of viable and active
probiotic cells per gram or milliliter of probiotic food products at the time of consumption
determines their health effects [54]. Therefore, probiotics must meet severe technological
standards in order to remain active throughout the entire manufacturing and storage
process. So far, representatives of genera Lactobacillus and Bifidobacterium have long
records in food implementation [55–57] because they are considered GRAS.

During the manufacturing or storage process, the number of active probiotic bacteria
declines by a fold factor of 10–100 or more. All of the factors that influence probiotics’ long-
term survival in meals include oxygen content, heating temperature, acidity, water activity,
osmotic stress, moisture content, and packing material [40]. The number of viable and
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active cells per gram or milliliter of probiotic food products at the moment of consumption
is the most critical value for the functional food, as it determines their efficacy [58]. Two
general approaches exist in order to assess the vitality of individual bacterial cells in
foods [59]. The golden standard remains the culture-dependent method for determination
of numbers of colony-forming units per gram of original material (cfu/g) [60]. On the other
hand DNA and flow cytometric-based methods are constantly improved in order to obtain
culture-independent and reliable screening methods [59].

Figure 2 summarizes the main factors that influence the viability of probiotics during
manufacturing and consumption. During processing, the food component interactions
as sugars, salt, antimicrobial substances can significantly affect the viability of probiotics.
Together with the moisture content and acidity, these are the main requirements. Processing
factors are also critical because they include often various mechanical forces are applied
and most frequently different temperature regimes. The latter is one of the very limiting
factors for the survival of probiotic bacteria. During storage, again the moisture content
and acidity play an important role, as well as the type of packaging material [61]. Once the
functional food is consumed then the environmental factors of different compartments of
the GIT are applied.
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2.4. Role of Food Ingredients and Additives

The compatibility of probiotic bacteria with dietary items has a significant impact on
their development and survivability. Beneficial, neutral, or detrimental effects on probiotics
may be seen with respect to the components [63]. Furthermore, food additives such as
salts, sugars, sweeteners, aroma compounds, preservatives greatly influence probiotic
survival [64]. Lactic acid bacteria strains were proved to interact with aroma compounds
involved in cheese production and thus modulate the flavor of the product [65]. Food
components and chemicals that interact with probiotics may have a negative impact
on their ability to develop and survive. For example, an important group of bioactive
compounds is polyphenolic compounds that are abundant in plant-derived food. They
possess antioxidant properties and are generally associated with health benefits. Studies
demonstrate, however, that they inhibit the growth of lactic acid bacteria [66].

There is a group of compounds that were proved to enhance the growth of probiotic
cultures. They are called prebiotics and are defined as ‘a substrate that is selectively utilized
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by host microorganisms conferring a health benefit’ [67]. These are food components that
are not digested by the body but are metabolized by probiotic bacteria. It is believed that
probiotics grow poorly or do not develop in diets other than fermented milk products
because they do not have sufficient proteolytic and glycolytic activity, as well as a high
requirement for certain nutrients such as non-protein nitrogen and B-group vitamins [68].
A good example of prebiotic compounds that stimulate the growth of lactobacilli and
bifidobacteria are oligosaccharides [69]. In Table 1, the effect of prebiotics on the viability
of probiotics is shown.

Table 1. Effect of prebiotics on viability of probiotics.

Name of Probiotic Effect of Prebiotic Probiotics Survival References

Bifidobacterium species Fructo and galacto oligosaccharides Enhanced viability was observed upon the
dosage level of prebiotics [70]

Bifidobacterium infantis, B.
pseudolongum, B. animalis

and B. longum
Lactulose, raftilose, maize, and insulin Retentive viability was observed up to 28

days with prebiotics addition [3]

B. animalis and B. longum Fructo oligosaccharide The recommended level of viability was
not achieved [2]

Lactobacillus casei, L. zeae
L. paracasei, L. rhamnosus Lactulose, raftilose, Maize and insulin Strain specific survival was observed [71]

L. rhamnosus Oligofructose and polydextrose
mediated prebiotic substances

Resulted in a high rate of probiotic
survival when substituted with prebiotics [72]

L. acidophilus Short and long chain inulin Viable count was increased with L.
acidophilus with addition of prebiotics [73]

L. casei,L. acidophilus Inulin and maize The viability of probiotics has been
improved with supplementation of yogurt [35]

B. animalis Beta glucan from two different
cereals sources

Viability and stability were improved with
yogurt supplementation. [74]

L. acidophilus, B.animalis Inulin and oligo fructose
Improved viability in the ice cream mix

with minimum of 106 of B. animalis colony
forming units of was maintained

[62]

L. rhamnosus Combination of inulin mixed with
yeast extract

The combined mixture positively
influences on the growth of L. reuteri [8]

3. Progress to Enhance Viability

The viability of probiotics has been increased by the use of a number of different ways.
A significant challenge for the food business is the utilization of these functional ingredients
to generate stable items with active properties that remain active during manufacturing
and storage till consumption [8]. Encapsulation is a process in which an active chemical
is imprisoned by a wall material that is either on the nanoscale, micrometer scale, or
millimeter scale in size. Micro- and nano-encapsulation are rapidly becoming available
to solve potential bioavailability issues, giving unique solutions to the food industry’s
difficulties in the process [11]. Generally speaking, microparticles are colloidal particles
with dimensions ranging from 3 to 800 nm, and nanoparticles are colloidal particles with
diameters ranging from 10 to 1000 nm [75].

Encapsulating probiotic cells in small sealed capsules to isolate them from their
environment is known as microencapsulation of probiotic cells (also known as probiotic
cell encapsulation). The capsules release their contents at a controlled rate over a long
period of time under the influence of various processing and environmental variables in
the gut media [8,76]. It looks to be the most effective method of protecting oneself against
microbes on the market. Probiotic microencapsulation, however, is a time-consuming
process. For microencapsulating probiotics or other beneficial compounds, a number of
different techniques have been developed. The bulk of these procedures entail encasing
probiotics in polymers such as starch, alginate, and carrageenan, coatings of them in
emulsions, or prebiotics with dry impacting and enteric coatings on the surface of food
products [10,11]. The encapsulation techniques that include drying of probiotics are well
studied and applied. It includes spray-drying, freeze-drying, and vacuum-drying [77].
Gel microspheres are also used. Electrospinning is a promising approach that allows
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encapsulation at the nano level under mild conditions [78]. Table 2 summarizes the recent
progress in encapsulating probiotics to increase their viability.

Table 2. Recent techniques used to enhance viability of probiotics for commercial applications.

Techniques Probiotic Size Range Shape Conditions Remarks Efficiency of
Encapsulation References

Freeze drying

L. plantarum
P. acidilactici
Pediococcus
pentosaceus
S. boulardii

L. acidophilus
L. casei

L. rhamnosus
P. acidilactici

>1 mm Irregular

Vacuum -0.5
torr, lower

condensation
temperature

preferred

Porous
structure,

expensive,

98%
(approximate

maximum)
[79–90]

Extrusion

L. acidophilus
Lactiplantibacillus

plantarum
Lacticaseibacillus

paracasei
Lactiplantibacillus

pentosus
L. casei

3 mm Beaded Gelling 0.25%

Simple, cost
effective, better

viability,
difficulty in
scaling up

97%
(approximate

maximum)
[91–96]

Emulsion

L. acidophilus
L. plantarum

L. casei
Enterococcus

faecium
S. boulardii
L. salivarius

Bifidobacterium

2 mm Spherical

Speed of
agitation
should be
controlled
along with

other general
reaction

parameters

High survival,
1 mm capsules

produced

84–97%
(approximate

maximum)
[96–102]

Spray drying
L. plantarum
L. paracasei
S. cerevisiae

80 mm Spherical

Nozzle
determines the

shape and
concentration

Improved
yield, low

density
particles

96%
(approximate

maximum)
[92,103–107]

Refractance drying L. plantarum Greater than
1 mm Flaky

Temperature
60 degree

Celsius

Good quality,
simple cost

effective, better
viability

93%
(approximate

maximum)
[107–110]

Electrohydrodynamic

L. plantarum
B. lactis

L. gasseri
Bifidobacterium
L. rhamnosus
B. animalis
lactis BB12

Streptococcus
thermophilus

150 nm Fibers Voltage and tip
resistance

Reproducible
fibers, good

yield

90%
(approximate

maximum)
[90,111–114]

Three-dimensional
printing

mashed
potatoes

probiotics
- Fibers Nozzle

diameter Good viability - [115,116]

Microfluidics gut bacteria - Droplet Double
emulsion

Deep function-
alization of
carriers and
profiling of
probiotics

- [117,118]

4. Limitations and Future Perspectives

As many novel and alternative approaches have been employed to increase the shelf
life of probiotics, many regulatory issues have been arising during storage conditions.
Refrigeration is still an inevitable procedure that needs to be followed even after process-
ing probiotics. Humid conditions cause degradation in the probiotic metabolically and
texturally. Acid stress in citrus and foods with lower pH requires mandatory refrigeration
to avoid deactivation and oxidation of the bioactive foods. Although many techniques
arise to upgrade the shelf life of probiotics, the need to maintain ambient conditions makes
the overall process very expensive and cumbersome [8].
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The process of microencapsulation enhances and stabilizes sensory properties, as
well as immobilizing cells to ensure uniform distribution of the product throughout the
product’s whole surface. There are a variety of elements that influence the efficiency of
microencapsulation. When it comes to viability, the type of microencapsulation used by
the method of spray drying, the intake and output temperatures, as well as the probiotic
strains chosen, are all important considerations to consider in future prospects [12]. It
is particularly important to choose the right wall material for the probiotics since they
must be protected from oxygen, heat and other environmental challenges during drying,
processing, and storage, as well as from low pH and protease in the gastric tract [12].

Presently, there are two important areas of interest are being investigated with the
goal of enhancing the probiotic potential of traditional Cell culture cereal-based beverages:
the development of stress-tolerant starters with established probiotic properties and the
maintenance of probiotic characteristics both at the point of consumption and throughout
the gastrointestinal tract to the site of action in the colon, for processing of microencapsula-
tion, protein–carbohydrate oil emulsions-based materials are preferred over other materials
such as cellulose acetate phthalate, xanthan gum, gellan gum, and starch alginate because
they produce smaller beads and have no effect on the sensory attributes of the product [75].

In addition, greater research is needed into the use of probiotics in conjunction
with legume supplementation/enrichment of cereal-based beverages to counteract the
widespread protein-energy malnutrition that exists in poor nations. Ogi, for example, is
made from maize, which has low levels of the amino acids lysine and tryptophan. The ad-
dition of a legume protein, such as soybeans or other readily available legumes, is currently
standard practice ensuring amino acid complementarities in the diet. Understanding how
legume inclusion in cereal-based beverages impacts their ability to maintain probiotics and
consumer acceptance is critical to the development of new products [76].

5. Conclusions

Probiotics in food must remain viable over the entire shelf life of the food product.
It is vital to select the most appropriate strain–food matrix combination, as well as to
provide convenient packing and storage conditions. In order to ensure effective probiotic
survival for health benefit purposes, it is important that the strains used, feeding matrix,
production phases, and storage conditions be compatible with each other. Including
prebiotics, growth factors/promoters, fruit and plant products in the food matrix, as
well as providing proper processing, fermentation, and storage conditions, all aid in the
survival of probiotic bacteria. It is necessary to create an appropriate processing and storage
environment with low oxygen and water content, minimal osmotic stress, and suitable
packing in order to obtain the best results. Besides being beneficial to the gastrointestinal
system, microencapsulation has shown to be a viable method of overcoming the problem
of low probiotic microbial stability in the food matrix. As a result, the food industry should
employ microencapsulation to improve the effectiveness of preventive measures.

When it comes to protecting a functional element, encapsulation is an excellent choice.
It has a plethora of advantages. There are a variety of approaches that can be used to
encapsulate the functional components. The maximum encapsulation efficiency has been
around 98% by traditional freeze-drying techniques. The use of spray drying or other
newer alternatives still has a long way to go to attain the efficiency at par with freeze drying.
By encapsulating functional components, it is possible to establish a controlled release of
the active medicine. Encapsulation can be used to create fortifying meals that provide
specific health benefits while also providing the functionality that is required. It has the
potential to alleviate micronutrient shortages around the world. One of the most pressing
issues that have to be addressed in future research is the transfer of the laboratory-scale
encapsulating technology to an industrial scale.
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